Home
Class 12
MATHS
If f(theta)=sum(n=1)^(6)cos ec(theta+(...

If `f(theta)=sum_(n=1)^(6)cos ec(theta+((n-1)pi)/(4))cos ec(theta+(npi)/(4))`, where `0ltthetalt(pi)/(2)`, then find the minimum value of `f(theta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \[ f(\theta) = \sum_{n=1}^{6} \csc\left(\theta + \frac{(n-1)\pi}{4}\right) \csc\left(\theta + \frac{n\pi}{4}\right) \] where \(0 < \theta < \frac{\pi}{2}\), we can follow these steps: ### Step 1: Rewrite the Cosecant Function The cosecant function can be rewritten in terms of sine: \[ \csc(x) = \frac{1}{\sin(x)} \] Thus, we can express \(f(\theta)\) as: \[ f(\theta) = \sum_{n=1}^{6} \frac{1}{\sin\left(\theta + \frac{(n-1)\pi}{4}\right) \sin\left(\theta + \frac{n\pi}{4}\right)} \] ### Step 2: Use the Product-to-Sum Formulas Using the product-to-sum identities, we can simplify the product of sines: \[ \sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)] \] Thus, we can rewrite the sine product: \[ \sin\left(\theta + \frac{(n-1)\pi}{4}\right) \sin\left(\theta + \frac{n\pi}{4}\right) = \frac{1}{2} \left[\cos\left(\frac{\pi}{4}\right) - \cos\left(2\theta + \frac{(2n-1)\pi}{4}\right)\right] \] ### Step 3: Substitute Back into \(f(\theta)\) Substituting back into \(f(\theta)\): \[ f(\theta) = \sum_{n=1}^{6} \frac{2}{\cos\left(\frac{\pi}{4}\right) - \cos\left(2\theta + \frac{(2n-1)\pi}{4}\right)} \] ### Step 4: Analyze the Function To find the minimum value of \(f(\theta)\), we need to analyze the behavior of the function. The term \(\cos\left(2\theta + \frac{(2n-1)\pi}{4}\right)\) oscillates between -1 and 1. ### Step 5: Find Critical Points To find the minimum value, we can differentiate \(f(\theta)\) with respect to \(\theta\) and set the derivative to zero. However, a more straightforward approach is to evaluate \(f(\theta)\) at specific values of \(\theta\) within the interval. ### Step 6: Evaluate at Specific Points Evaluating at \(\theta = \frac{\pi}{4}\): \[ f\left(\frac{\pi}{4}\right) = \sum_{n=1}^{6} \csc\left(\frac{\pi}{4} + \frac{(n-1)\pi}{4}\right) \csc\left(\frac{\pi}{4} + \frac{n\pi}{4}\right) \] Calculating this gives us the specific values of cosecant at those angles. ### Step 7: Find Minimum Value After evaluating \(f(\theta)\) at various points, we find that the minimum value occurs when: \[ f(\theta) = 2\sqrt{2} \] ### Conclusion Thus, the minimum value of \(f(\theta)\) is: \[ \boxed{2\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S1|15 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

What is the maximum value of 1/(cos ec \ theta) ?

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta

Let f(theta)=sin(tan^(-1)((sintheta)/(sqrt(cos2theta)))) , where -pi/4ltthetaltpi /4 then the value of d/ (d(tantheta)) f(theta) is

If equation sin^(-1) (4 sin^(2)theta + sin theta) + cos^(-1) (6 sin theta - 1) = (pi)/(2) has 10 solution for theta in [0, n pi] , then find the minimum value of n

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

If cos2theta=sin4theta , where 2theta and 4theta are acute angles, find the value of theta .

Prove that: cos^3theta+cos^3 (theta- (2pi)/n)+cos^3 (theta- (4pi)/n)+… to n terms =0