Home
Class 12
MATHS
The value of 3(cos theta-sin theta)^(4)+...

The value of `3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta` is where `theta in ((pi)/(4),(pi)/(2))` (a) `13-4cos^(4) theta` (b) `13-4cos^(6) theta` (c) `13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta` (d) `13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta`

A

`13-4cos^(6)theta`

B

`13-4cos^(4)theta+2sin^(2)thetacos^(2)theta`

C

`13-4cos^(2)theta+6cos^(4)theta`

D

`13-4cos^(2)theta+6sin^(2)thetacos^(2)theta`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX -JA|8 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

([cos theta+i sin theta)/(sin theta+i cos theta))^(4)=?

3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(6)theta)=?

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

The greatest value of (2sin theta+3cos theta+4)^(3).(6-2sin theta-3cos theta)^(2) , as theta in R , is

(1)/( sec 2 theta) = cos ^(4) theta - sin ^(4) theta.

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

cos^(4)theta-sin^(4)theta is equal to

Solve : 7 sin^(2) theta + 3 cos^(2) theta = 4 .

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta