Home
Class 12
MATHS
If 2p=x+1/x and 2q=y+1/y, then the value...

If `2p=x+1/x` and `2q=y+1/y`, then the value of `((pq+sqrt((p^2-1)(q^2-1)))/(xy+1/(xy)))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( 2p = x + \frac{1}{x} \) 2. \( 2q = y + \frac{1}{y} \) We want to find the value of: \[ \frac{pq + \sqrt{(p^2 - 1)(q^2 - 1)}}{xy + \frac{1}{xy}} \] ### Step 1: Find \( p^2 \) Starting with the first equation, we square both sides: \[ (2p)^2 = \left(x + \frac{1}{x}\right)^2 \] This simplifies to: \[ 4p^2 = x^2 + 2 + \frac{1}{x^2} \] Rearranging gives: \[ 4p^2 = x^2 + \frac{1}{x^2} + 2 \] Thus, \[ p^2 = \frac{x^2 + \frac{1}{x^2} + 2}{4} \] ### Step 2: Simplify \( p^2 - 1 \) Now, we calculate \( p^2 - 1 \): \[ p^2 - 1 = \frac{x^2 + \frac{1}{x^2} + 2}{4} - 1 = \frac{x^2 + \frac{1}{x^2} + 2 - 4}{4} = \frac{x^2 + \frac{1}{x^2} - 2}{4} \] Notice that \( x^2 + \frac{1}{x^2} - 2 = \left(x - \frac{1}{x}\right)^2 \). Therefore, \[ p^2 - 1 = \frac{\left(x - \frac{1}{x}\right)^2}{4} \] ### Step 3: Find \( q^2 \) and \( q^2 - 1 \) Similarly, for \( q \): \[ q^2 = \frac{y^2 + \frac{1}{y^2} + 2}{4} \] Thus, \[ q^2 - 1 = \frac{y^2 + \frac{1}{y^2} + 2 - 4}{4} = \frac{y^2 + \frac{1}{y^2} - 2}{4} = \frac{\left(y - \frac{1}{y}\right)^2}{4} \] ### Step 4: Calculate \( \sqrt{(p^2 - 1)(q^2 - 1)} \) Now we can find \( \sqrt{(p^2 - 1)(q^2 - 1)} \): \[ \sqrt{(p^2 - 1)(q^2 - 1)} = \sqrt{\left(\frac{\left(x - \frac{1}{x}\right)^2}{4}\right)\left(\frac{\left(y - \frac{1}{y}\right)^2}{4}\right)} = \frac{(x - \frac{1}{x})(y - \frac{1}{y})}{4} \] ### Step 5: Calculate \( pq \) Next, we find \( pq \): \[ pq = \frac{(x + \frac{1}{x})(y + \frac{1}{y})}{4} = \frac{xy + x\frac{1}{y} + y\frac{1}{x} + \frac{1}{xy}}{4} \] ### Step 6: Substitute into the main expression Now we substitute \( pq \) and \( \sqrt{(p^2 - 1)(q^2 - 1)} \) into the main expression: \[ \frac{pq + \sqrt{(p^2 - 1)(q^2 - 1)}}{xy + \frac{1}{xy}} = \frac{\frac{xy + x\frac{1}{y} + y\frac{1}{x} + \frac{1}{xy}}{4} + \frac{(x - \frac{1}{x})(y - \frac{1}{y})}{4}}{xy + \frac{1}{xy}} \] ### Step 7: Simplify the numerator The numerator becomes: \[ \frac{xy + x\frac{1}{y} + y\frac{1}{x} + \frac{1}{xy} + (x - \frac{1}{x})(y - \frac{1}{y})}{4} \] ### Step 8: Simplify the denominator The denominator is: \[ xy + \frac{1}{xy} \] ### Step 9: Final simplification After simplifying the entire expression, we find that it reduces to: \[ \frac{1}{2} \] Thus, the final answer is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If p + q = 7 and pq = 12 , then will is the value of 1/(p^2) + 1/(q^2) ?

P=x^3-1/x^3, Q=x-1/x x in (1,oo) then minimum value of P/(sqrt(3)Q^2)

The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

If 1/x - 1/y=4 , find the value of (2x+4xy-2y)/(x-y-2xy) .

If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cuts the circle x^(2)+y^(2)=a^(2) at points Q(x_(1),y_(1)) and R(x_(2),y_(2)) , then the value of (1)/(y_(1))+(1)/(y_(2)) is

if p = (4xy)/(x + y) , find the value of (p+2x)/(p-2x) + (p+2y)/(p-2y) .

If p and q are positive real numbers such that p^2+""q^2=""1 , then the maximum value of (p""+""q) is (1) 2 (2) 1/2 (3) 1/(sqrt(2)) (4) sqrt(2)

if x=31,y=32 and z=33 then the value of |{:((x^(2)+1)^(2),,(xy+1)^(2),,(xz+1)^(2)),((xy+1)^(2),,(y^(2)+1)^(2),,(yz+1)^(2)),((xz+1)^(2),,(yz+1)^(2),,(z^(2)+1)^(2)):}|" is " "____"

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^(2)))/(xy) ,is

ALLEN-TEST PAPER-MATHS
  1. If alpha and beta are roots of equation (log(3)x)^(2)-4(log(3)x)+2=0 t...

    Text Solution

    |

  2. If alpha and beta are roots of equation (log(3)x)^(2)-4(log(3)x)+2=0 t...

    Text Solution

    |

  3. Let alpha and beta be the roots of the equation x^2+(2-costheta)x-(1+c...

    Text Solution

    |

  4. If 2p=x+1/x and 2q=y+1/y, then the value of ((pq+sqrt((p^2-1)(q^2-1)))...

    Text Solution

    |

  5. Let P be minimum value of 9sin^2x+16cosec^2x and S be the minimum valu...

    Text Solution

    |

  6. The values of a for which the equation 2(log(3)x)^(2)-|log(3)x|+a=0 po...

    Text Solution

    |

  7. Number of integers satisfying the inequality log((x+3))(x^2-x) lt 1 is

    Text Solution

    |

  8. If x and y are positive real numbers such that x^3+8y^3+24xy=64 , then...

    Text Solution

    |

  9. Select correct set of quantum numbers of electron have lowest energy

    Text Solution

    |

  10. Which of the following oxide is most acidic ?

    Text Solution

    |

  11. The expression sqrt(6+2sqrt3+2sqrt2+2sqrt6)-sqrt(3-2sqrt2) simplifies ...

    Text Solution

    |

  12. If the expression sqrt(log^2x)+sqrt(4 cos^2 y-4 cos y+1) takes its lea...

    Text Solution

    |

  13. The value of ("sin"(2019pi)/2-cos2019pi)/("tan"(2020pi)/3) is

    Text Solution

    |

  14. The sum of all real values of X satisfying the equation (x^2-5x+5)^(x^...

    Text Solution

    |

  15. The value of 'x' satisfying the equation "log"2"log"3(sqrtx+sqrt(x-3))...

    Text Solution

    |

  16. If sin^6 theta+sin^4 theta+cos^6 theta+cos^4 theta is written in the f...

    Text Solution

    |

  17. Number of integral values of 'x' satisfying |x+4|+|x-4|=8 is :-

    Text Solution

    |

  18. The expression sqrt(sin^4 1^@+2+2cos 2^@)+sqrt(cos^4 1^@-2cos2^@+2) ...

    Text Solution

    |

  19. If 25^(log5cos x)=a and e^(ln(-sinx))=b then the correct option is (wh...

    Text Solution

    |

  20. Number of roots of the equation x^2-2x-log2 |1-x|=3 is

    Text Solution

    |