Home
Class 14
MATHS
What is lim(xto(pi)/(6))(2sin^(2)x+sin...

What is `lim_(xto(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)` to ?

A

A. `-(1)/(2)`

B

B. `-(1)/(3)`

C

C. `-2`

D

D. `-3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x + 1}, \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{6} \) First, we substitute \( x = \frac{\pi}{6} \) into the expression. \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Now we calculate the numerator and denominator: **Numerator:** \[ 2\sin^2\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) - 1 = 2\left(\frac{1}{2}\right)^2 + \frac{1}{2} - 1 = 2 \cdot \frac{1}{4} + \frac{1}{2} - 1 = \frac{1}{2} + \frac{1}{2} - 1 = 0 \] **Denominator:** \[ 2\sin^2\left(\frac{\pi}{6}\right) - 3\sin\left(\frac{\pi}{6}\right) + 1 = 2\left(\frac{1}{2}\right)^2 - 3\left(\frac{1}{2}\right) + 1 = 2 \cdot \frac{1}{4} - \frac{3}{2} + 1 = \frac{1}{2} - \frac{3}{2} + 1 = 0 \] Since both the numerator and denominator evaluate to 0, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator separately. **Numerator Derivative:** \[ \frac{d}{dx}(2\sin^2 x + \sin x - 1) = 4\sin x \cos x + \cos x = \cos x(4\sin x + 1) \] **Denominator Derivative:** \[ \frac{d}{dx}(2\sin^2 x - 3\sin x + 1) = 4\sin x \cos x - 3\cos x = \cos x(4\sin x - 3) \] ### Step 3: Substitute \( x = \frac{\pi}{6} \) again Now we substitute \( x = \frac{\pi}{6} \) into the derivatives: **Numerator:** \[ \cos\left(\frac{\pi}{6}\right)(4\sin\left(\frac{\pi}{6}\right) + 1) = \frac{\sqrt{3}}{2}\left(4 \cdot \frac{1}{2} + 1\right) = \frac{\sqrt{3}}{2}(2 + 1) = \frac{\sqrt{3}}{2} \cdot 3 = \frac{3\sqrt{3}}{2} \] **Denominator:** \[ \cos\left(\frac{\pi}{6}\right)(4\sin\left(\frac{\pi}{6}\right) - 3) = \frac{\sqrt{3}}{2}\left(4 \cdot \frac{1}{2} - 3\right) = \frac{\sqrt{3}}{2}(2 - 3) = \frac{\sqrt{3}}{2}(-1) = -\frac{\sqrt{3}}{2} \] ### Step 4: Calculate the limit Now we can compute the limit: \[ \lim_{x \to \frac{\pi}{6}} \frac{3\sqrt{3}/2}{-\sqrt{3}/2} = \frac{3\sqrt{3}/2}{-\sqrt{3}/2} = -3 \] ### Final Answer Thus, the limit is \[ \boxed{-3}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

What is lim_(xto(pi)/(6)) (2sin^(2)x+sinx-1)/(sin^(2)x-3sinx+1) to?

lim_(x to pi//6) (2sin^2x+sinx-1)/(2sin^2x-3sinx+1)=

Evaluate the following limits: lim_(x to(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)

Evaluate the following limits: lim_(xrarr pi//6)((2sin^(2)x+sinx-1))/((2sin^(2)x-3sinx+1))

(sinx-sin3x)/(sin^(2)x-cos^(2)x) = 2sinx

Evaluate lim_(xto pi//2) tan^(2)xsqrt(2sin^(2)x+3sinx+4)-sqrt(sin^(2)x+6sinx+2).

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

Evaluate the following Limits lim_(xto(pi)/(6))(sqrt(3)sinx-cosx)/((pi)/(6)-x)

PUNEET DOGRA-LIMIT-PREV YEAR QUESTIONS
  1. What is the value of lim(xto0)(sinx^(0))/(tan3x^(0)) ?

    Text Solution

    |

  2. lim(xto0)(1-cos^(3)4x)/(x^(2)) equal to ?

    Text Solution

    |

  3. What is lim(xto(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1) to ?

    Text Solution

    |

  4. What is lim(thetato0)(sqrt(1-costheta))/(theta) equal to ?

    Text Solution

    |

  5. If f(x)=sqrt(25-x^(2)) then what is lim(xto1)(f(x)-f(1))/(x-1)equa...

    Text Solution

    |

  6. What is lim(hto0)(sqrt(2x+3h)-sqrt(2x))/(2h)equal to ?

    Text Solution

    |

  7. What is lim(xto0)(tanx)/(sin2x) equal to ?

    Text Solution

    |

  8. If x^(2)-6x-27gt0, then which one of the following is correct ?

    Text Solution

    |

  9. What is lim(xto0)(e^(x)-(1+x))/(x^(2)) equal to ?

    Text Solution

    |

  10. If F(x)=sqrt(9-x^(2)) then what is lim(xto1)(f(x)-F(1))/(x-1) equal...

    Text Solution

    |

  11. verify the statement true or false.If underset(x to a) lim [f(x) g(x...

    Text Solution

    |

  12. If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer f...

    Text Solution

    |

  13. simplify

    Text Solution

    |

  14. What is lim(xto0)e^((1)/(X^(2))) equal to ?

    Text Solution

    |

  15. If lim(xto0)phi(x)=a^(2) . where ane0. then what is lim(xto0)((x)/(a...

    Text Solution

    |

  16. If f(x)=sqrt(25-x^(2)) then what is lim(xto1)(f(x)-f(1))/(x-1)equa...

    Text Solution

    |

  17. If f(x)=(sin(e^(x-2)-1))/(In(x-1)) then lim(xto2)(x) is equal to ?

    Text Solution

    |

  18. If G(x)=sqrt(25-x^(2)) then what is lim(xto1)(G(x)-G(1))/(x-1) equ...

    Text Solution

    |

  19. What is lim(x to 2)(x+2) ?

    Text Solution

    |

  20. Given that lim(xtooo)((2+x^(2))/(1+x)-Ax-B)=3 What is the valu...

    Text Solution

    |