Home
Class 14
MATHS
If G(x)=sqrt(25-x^(2)) then what is l...

If `G(x)=sqrt(25-x^(2))` then what is `lim_(xto1)(G(x)-G(1))/(x-1)` equal to ?

A

`-(1)/(2sqrt(6))`

B

`(1)/(5)`

C

`-(1)/(6)`

D

`(1)/(sqrt(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} \) where \( G(x) = \sqrt{25 - x^2} \), we will follow these steps: ### Step 1: Evaluate \( G(1) \) First, we need to find \( G(1) \): \[ G(1) = \sqrt{25 - 1^2} = \sqrt{25 - 1} = \sqrt{24} \] ### Step 2: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \lim_{x \to 1} \frac{\sqrt{25 - x^2} - \sqrt{24}}{x - 1} \] ### Step 3: Substitute \( x = 1 \) If we directly substitute \( x = 1 \) into the limit, we get: \[ \frac{\sqrt{25 - 1^2} - \sqrt{24}}{1 - 1} = \frac{\sqrt{24} - \sqrt{24}}{0} = \frac{0}{0} \] This is an indeterminate form, so we will apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: 1. Differentiate the numerator: \[ \frac{d}{dx}(\sqrt{25 - x^2}) = \frac{-x}{\sqrt{25 - x^2}} \] 2. Differentiate the denominator: \[ \frac{d}{dx}(x - 1) = 1 \] Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{\frac{-x}{\sqrt{25 - x^2}}}{1} = \lim_{x \to 1} \frac{-x}{\sqrt{25 - x^2}} \] ### Step 5: Evaluate the limit again Now substitute \( x = 1 \): \[ \frac{-1}{\sqrt{25 - 1^2}} = \frac{-1}{\sqrt{24}} = \frac{-1}{2\sqrt{6}} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \frac{-1}{2\sqrt{6}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

If F(x)=sqrt(9-x^(2)) , then what is lim_(xto1) (F(x)-F(1))/(x-1) equal to?

If f(x )=sqrt(25-x^(2)) , then what is lim_(x to 1) (f(x)-f(1))/(x-1) equal to

What is lim_(xto0) ((1+x)^(n)-1)/(x) equal to ?

What is lim_(xto0) (log_(5)(1+x))/(x) equal to?

What is lim_(xto0) (5^(x)-1)/(x) equal to ?