Home
Class 14
MATHS
Given that lim(xtooo)((2+x^(2))/(1+x)-A...

Given that `lim_(xtooo)((2+x^(2))/(1+x)-Ax-B)=3`
What is the value of B ?

A

`-1`

B

3

C

`-4`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to \infty} \left( \frac{2 + x^2}{1 + x} - Ax - B \right) = 3, \] we need to find the value of \( B \). ### Step-by-step Solution: 1. **Set up the limit expression**: We start with the expression inside the limit: \[ \frac{2 + x^2}{1 + x} - Ax - B. \] 2. **Combine the terms**: To combine the terms, we can express everything over a common denominator: \[ \frac{2 + x^2 - (Ax + B)(1 + x)}{1 + x}. \] 3. **Expand the numerator**: Expanding the numerator gives: \[ 2 + x^2 - (Ax + B + Ax^2 + Bx) = (1 - A)x^2 + (2 - B - A)x + 2 - B. \] 4. **Analyze the degrees of the polynomial**: The highest degree term in the numerator is \((1 - A)x^2\). For the limit to exist and be finite as \( x \to \infty \), the coefficient of \( x^2 \) must be zero: \[ 1 - A = 0 \implies A = 1. \] 5. **Substitute \( A \) back into the limit**: Now substituting \( A = 1 \) back into the expression, we have: \[ \lim_{x \to \infty} \left( \frac{(2 - B)x + 2 - B}{1 + x} \right). \] 6. **Simplify the limit**: As \( x \to \infty \), the dominant term in the numerator is \((2 - B)x\) and in the denominator is \(x\): \[ \lim_{x \to \infty} \frac{(2 - B)x}{x} = 2 - B. \] 7. **Set the limit equal to 3**: We know from the problem statement that this limit equals 3: \[ 2 - B = 3. \] 8. **Solve for \( B \)**: Rearranging gives: \[ -B = 3 - 2 \implies -B = 1 \implies B = -1. \] ### Final Answer: Thus, the value of \( B \) is: \[ \boxed{-1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

Given that lim_(xtooo) ((2+x^(2))/(1+x)-Ax-B)=3 What is the value of A?

Given that lim_(x rarr oo)((2+x^(2))/(1+x)-Ax-B)=3. What is the value of A?

Evaluate lim_(xtooo) x^((1)/(x)).

If lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0 , find the values of a and b.

If lim_(xtooo)((x^(2)+x+1)/(x+1)-ax-b)=4 , then

(2) lim_(xtooo)sqrt(x^(2)+4)/(x+3)

Given that (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A?

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of B ?

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of A ?