Home
Class 14
MATHS
What is lim(ntooo)(1+2+3+......+n)/(1^(...

What is `lim_(ntooo)(1+2+3+......+n)/(1^(2)+2^(2)+3^(3)+.....+n^(2))` equal to ?

A

5

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1 + 2 + 3 + \ldots + n}{1^2 + 2^2 + 3^2 + \ldots + n^2} \), we will follow these steps: ### Step 1: Identify the formulas for the sums The sum of the first \( n \) natural numbers is given by: \[ S_n = 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] The sum of the squares of the first \( n \) natural numbers is given by: \[ S_{n^2} = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 2: Substitute the formulas into the limit Now we can substitute these formulas into our limit: \[ \lim_{n \to \infty} \frac{S_n}{S_{n^2}} = \lim_{n \to \infty} \frac{\frac{n(n + 1)}{2}}{\frac{n(n + 1)(2n + 1)}{6}} \] ### Step 3: Simplify the expression We can simplify the expression: \[ = \lim_{n \to \infty} \frac{n(n + 1)}{2} \cdot \frac{6}{n(n + 1)(2n + 1)} \] \[ = \lim_{n \to \infty} \frac{6}{2(2n + 1)} = \lim_{n \to \infty} \frac{3}{2n + 1} \] ### Step 4: Evaluate the limit As \( n \) approaches infinity, the term \( 2n + 1 \) also approaches infinity: \[ \lim_{n \to \infty} \frac{3}{2n + 1} = 0 \] ### Conclusion Thus, the limit is: \[ \lim_{n \to \infty} \frac{1 + 2 + 3 + \ldots + n}{1^2 + 2^2 + 3^2 + \ldots + n^2} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

What is lim_(ntooo) (1+2+3+......+n)/(1^(2)+2^(2)+3^(2)+......n^(2))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

The value of lim_(n rarr oo)(1^(2)*n+2^(2)*(n-1)+......+n^(2)*1)/(1^(3)+2^(3)+......+n^(3)) is equal to