Home
Class 14
MATHS
What is lim(xto0)(1-cosx)/(x) equal to...

What is `lim_(xto0)(1-cosx)/(x)` equal to ?

A

0

B

`1//2`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the expression \(\lim_{x \to 0} \frac{1 - \cos x}{x}\), we can follow these steps: ### Step 1: Rewrite the expression using a trigonometric identity We know from trigonometric identities that: \[ 1 - \cos^2 x = \sin^2 x \] This allows us to express \(1 - \cos x\) in terms of \(\sin x\): \[ 1 - \cos x = \sin^2 x / (1 + \cos x) \] Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{\sin^2 x}{(1 + \cos x)x} \] ### Step 2: Break the limit into two parts We can separate the limit into two parts: \[ \lim_{x \to 0} \frac{\sin^2 x}{(1 + \cos x)x} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right) \cdot \left(\frac{\sin x}{1 + \cos x}\right) \] ### Step 3: Evaluate the first limit We know from the standard limit result that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Step 4: Evaluate the second limit Now we need to evaluate: \[ \lim_{x \to 0} \frac{\sin x}{1 + \cos x} \] At \(x = 0\): - \(\sin 0 = 0\) - \(\cos 0 = 1\), so \(1 + \cos 0 = 2\) Thus, \[ \lim_{x \to 0} \frac{\sin x}{1 + \cos x} = \frac{0}{2} = 0 \] ### Step 5: Combine the results Now we can combine the results from the two limits: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} = \left(\lim_{x \to 0} \frac{\sin x}{x}\right) \cdot \left(\lim_{x \to 0} \frac{\sin x}{1 + \cos x}\right) = 1 \cdot 0 = 0 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

What is lim_(xto0) (cosx)/(pi-x) equal to ?

What is lim_(xto0) (2(1-cosx))/(x^(2) equal to?

What is lim_(xto0) (5^(x)-1)/(x) equal to ?