Home
Class 14
MATHS
What is the value of lim(xto0)(2(1-cos...

What is the value of `lim_(xto0)(2(1-cosx))/(x^(2))`?

A

0

B

`1//2`

C

`1//4`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( \lim_{x \to 0} \frac{2(1 - \cos x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the expression using the trigonometric identity We know that \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \). Therefore, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{2(1 - \cos x)}{x^2} = \lim_{x \to 0} \frac{2 \cdot 2 \sin^2\left(\frac{x}{2}\right)}{x^2} = \lim_{x \to 0} \frac{4 \sin^2\left(\frac{x}{2}\right)}{x^2} \] ### Step 2: Simplify the expression Next, we can simplify the expression: \[ \lim_{x \to 0} \frac{4 \sin^2\left(\frac{x}{2}\right)}{x^2} = \lim_{x \to 0} \frac{4 \sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \cdot \frac{1}{4} = \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} \] ### Step 3: Apply the limit property Using the limit property \( \lim_{u \to 0} \frac{\sin u}{u} = 1 \), we can substitute \( u = \frac{x}{2} \): \[ \lim_{x \to 0} \frac{\sin^2\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)^2} = \left( \lim_{u \to 0} \frac{\sin u}{u} \right)^2 = 1^2 = 1 \] ### Step 4: Combine the results Now, we can combine the results: \[ \lim_{x \to 0} \frac{2(1 - \cos x)}{x^2} = 4 \cdot 1 = 2 \] ### Final Answer Thus, the value of the limit is: \[ \lim_{x \to 0} \frac{2(1 - \cos x)}{x^2} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos

Similar Questions

Explore conceptually related problems

What is the value of lim_(xto0) (cos(ax)-cos(bx))/(x^(2))

What is the value of lim_(xto0) (sinx)/(x) ?

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

What is the value of lim_(xto0) (sin|x|)/(x) ?

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

The value of lim_(xto0)(1/(x^(2))-cotx) is