Home
Class 14
MATHS
The value of sqrt(5+2sqrt(6))-(1)/(sqrt(...

The value of `sqrt(5+2sqrt(6))-(1)/(sqrt(5+2sqrt(6)))` is :

A

`2sqrt(2)`

B

`2sqrt(3)`

C

`1+sqrt(5)`

D

`sqrt(5)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}} \), we can follow these steps: ### Step 1: Simplify \( \sqrt{5 + 2\sqrt{6}} \) We start by rewriting \( \sqrt{5 + 2\sqrt{6}} \). We can express \( 5 + 2\sqrt{6} \) in a form that allows us to take the square root more easily. We notice that: \[ 5 + 2\sqrt{6} = (\sqrt{3} + \sqrt{2})^2 \] This is because: \[ (\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2(\sqrt{3})(\sqrt{2}) + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] Thus, we have: \[ \sqrt{5 + 2\sqrt{6}} = \sqrt{(\sqrt{3} + \sqrt{2})^2} = \sqrt{3} + \sqrt{2} \] ### Step 2: Substitute back into the expression Now we substitute this back into our original expression: \[ \sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}} = (\sqrt{3} + \sqrt{2}) - \frac{1}{\sqrt{3} + \sqrt{2}} \] ### Step 3: Simplify \( \frac{1}{\sqrt{3} + \sqrt{2}} \) To simplify \( \frac{1}{\sqrt{3} + \sqrt{2}} \), we can multiply the numerator and the denominator by the conjugate \( \sqrt{3} - \sqrt{2} \): \[ \frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \] ### Step 4: Combine the terms Now we can substitute this back into our expression: \[ \sqrt{3} + \sqrt{2} - (\sqrt{3} - \sqrt{2}) = \sqrt{3} + \sqrt{2} - \sqrt{3} + \sqrt{2} \] This simplifies to: \[ 2\sqrt{2} \] ### Final Answer Thus, the value of the expression \( \sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}} \) is: \[ \boxed{2\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

6.The value of (sqrt(5)+sqrt(2))(sqrt(5)-sqrt(2)) is:

The value of (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9)) is

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

The value of sqrt(5+2sqrt(6)) is sqrt(3)-sqrt(2)(b)sqrt(3)+sqrt(2)(c)sqrt(5)+sqrt(6)(d) none of these

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

(sqrt(6)+sqrt(3))/(sqrt(5)+sqrt(2))

The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6))) is

(sqrt(6)+sqrt(5)+ 1/(sqrt(6)+sqrt(5)))^2

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

The value of (sqrt(5)+2)^(6)+(sqrt(5)-2)^(6) is