Home
Class 14
MATHS
The value of sqrt(2^(4))+root(3)(64)+roo...

The value of `sqrt(2^(4))+root(3)(64)+root(4)(2^(8))` is :

A

`12`

B

`16`

C

`18`

D

`24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{2^4} + \sqrt[3]{64} + \sqrt[4]{2^8} \), we will simplify each term step by step. ### Step 1: Simplify \( \sqrt{2^4} \) The square root of \( 2^4 \) can be simplified as follows: \[ \sqrt{2^4} = 2^{4/2} = 2^2 = 4 \] ### Step 2: Simplify \( \sqrt[3]{64} \) Next, we simplify the cube root of 64. We know that: \[ 64 = 4^3 = (2^2)^3 = 2^6 \] Thus, we can write: \[ \sqrt[3]{64} = \sqrt[3]{2^6} = 2^{6/3} = 2^2 = 4 \] ### Step 3: Simplify \( \sqrt[4]{2^8} \) Now, we simplify the fourth root of \( 2^8 \): \[ \sqrt[4]{2^8} = 2^{8/4} = 2^2 = 4 \] ### Step 4: Combine all the simplified terms Now we can combine all the simplified terms: \[ \sqrt{2^4} + \sqrt[3]{64} + \sqrt[4]{2^8} = 4 + 4 + 4 = 12 \] ### Final Answer The value of the expression \( \sqrt{2^4} + \sqrt[3]{64} + \sqrt[4]{2^8} \) is \( 12 \). ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

root(4)(root(3)(3^2))

The value of 3. sqrt256 - 10. root(3)(125) + root(4)(81) is

find the multiplication value of - sqrt(2) *root(3)(3)*root(4)(4)

find the multiplication value of - sqrt(2) *root(3)(3)*root(4)(4)

root (4) (root(3)(2^2))

The greatest of sqrt(2),root(6)(3),root(3)(4),root(4)(5) is a.sqrt(2)b .root(3)(4)c.root(4)(5)d.root(6)(3)

The value of (root3(8)+root3(27)-root3(343))/((2)^(2)-3) is

root(3)(2) times root(3)(4)

Find the value of (root(3)(125)times root(3)(64))/(root(3)(125)-root(3)(64))