Home
Class 14
MATHS
2root(3)(32)-3root(3)(4)+root(3)(500) is...

`2root(3)(32)-3root(3)(4)+root(3)(500)` is equal to :

A

`4root(3)(6)`

B

`3sqrt(24)`

C

`6root(3)(4)`

D

`916`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2\sqrt[3]{32} - 3\sqrt[3]{4} + \sqrt[3]{500} \), we will simplify each term step by step. ### Step 1: Simplify \( 2\sqrt[3]{32} \) We can express \( 32 \) as \( 8 \times 4 \), where \( 8 \) is a perfect cube. \[ \sqrt[3]{32} = \sqrt[3]{8 \times 4} = \sqrt[3]{8} \times \sqrt[3]{4} = 2\sqrt[3]{4} \] Now, substituting this back into the expression: \[ 2\sqrt[3]{32} = 2 \times 2\sqrt[3]{4} = 4\sqrt[3]{4} \] ### Step 2: Simplify \( 3\sqrt[3]{4} \) This term is already in its simplest form: \[ 3\sqrt[3]{4} \] ### Step 3: Simplify \( \sqrt[3]{500} \) We can express \( 500 \) as \( 125 \times 4 \), where \( 125 \) is also a perfect cube. \[ \sqrt[3]{500} = \sqrt[3]{125 \times 4} = \sqrt[3]{125} \times \sqrt[3]{4} = 5\sqrt[3]{4} \] ### Step 4: Combine all the terms Now we can combine all the simplified terms: \[ 4\sqrt[3]{4} - 3\sqrt[3]{4} + 5\sqrt[3]{4} \] Combining these gives: \[ (4 - 3 + 5)\sqrt[3]{4} = 6\sqrt[3]{4} \] ### Final Answer Thus, the expression \( 2\sqrt[3]{32} - 3\sqrt[3]{4} + \sqrt[3]{500} \) simplifies to: \[ \boxed{6\sqrt[3]{4}} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

root(3)(2)+root(3)(16)-root(3)(54)

root(3)(root(3)(a^(3))) is equal to

root(3)(8^(2)) is equal to :-

root(3)(1331)xx root(3)(216)+root(3)(729)+root(3)(64) is equal to

root(3)(2) times root(3)(4)

root(3)(4)times root(3)(16)