Home
Class 14
MATHS
The simplified form of (16^(3//2)+16^(-3...

The simplified form of `(16^(3//2)+16^(-3//2))` is :

A

`0`

B

`(4097)/(64)`

C

`1`

D

`(16)/(4097)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(16^{\frac{3}{2}} + 16^{-\frac{3}{2}}\), we can follow these steps: ### Step 1: Rewrite the powers of 16 We know that \(16\) can be expressed as \(4^2\). Therefore, we can rewrite \(16^{\frac{3}{2}}\) as: \[ (4^2)^{\frac{3}{2}} = 4^{2 \cdot \frac{3}{2}} = 4^3 \] ### Step 2: Calculate \(4^3\) Now, we calculate \(4^3\): \[ 4^3 = 64 \] ### Step 3: Rewrite \(16^{-\frac{3}{2}}\) Next, we simplify \(16^{-\frac{3}{2}}\): \[ 16^{-\frac{3}{2}} = \frac{1}{16^{\frac{3}{2}}} = \frac{1}{4^3} = \frac{1}{64} \] ### Step 4: Combine the results Now we can combine the results from Step 2 and Step 3: \[ 16^{\frac{3}{2}} + 16^{-\frac{3}{2}} = 64 + \frac{1}{64} \] ### Step 5: Find a common denominator To add these two terms, we need a common denominator: \[ 64 = \frac{64 \times 64}{64} = \frac{4096}{64} \] Thus, \[ 64 + \frac{1}{64} = \frac{4096}{64} + \frac{1}{64} = \frac{4096 + 1}{64} = \frac{4097}{64} \] ### Final Answer The simplified form of \(16^{\frac{3}{2}} + 16^{-\frac{3}{2}}\) is: \[ \frac{4097}{64} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

The simplified form of (a+2)/(a+3) - (a+1)/(a+2) is:

The value of (16)^((5)/(2)) + (16)^((-3)/(2)) is equal to

simplify: 16^(5/2) div 16^(1/2) =

Find the value of {(16)^((3)/(2))+(16)^(-(3)/(2))}

Simplified value of (16)^(-(1)/(4))xx "^(4)sqrt(16) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (sqrt(8)-sqrt(4)-sqrt(2)) equals :

    Text Solution

    |

  2. 8^(2//3) is equal to :

    Text Solution

    |

  3. The simplified form of (16^(3//2)+16^(-3//2)) is :

    Text Solution

    |

  4. 16^(3//4) is equal to :

    Text Solution

    |

  5. (0.01024)^(1//5) is equal to :

    Text Solution

    |

  6. (16^(0.16)xx2^(0.36)) is equal to

    Text Solution

    |

  7. (256)^(0.16) xx (16)^(0.18) is equal to

    Text Solution

    |

  8. The value of ((243)^(0.13)xx(243)^(0.07))/((7)^(0.25)xx(49)^(0.075)xx(...

    Text Solution

    |

  9. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  10. The value of ((0.67xx0.67xx0.67)-(0.33xx0.33xx0.33))/((0.67xx0.67)+(0....

    Text Solution

    |

  11. The approximate value of (3sqrt(12))/(2sqrt(28))-:(2sqrt(21))/(sqrt...

    Text Solution

    |

  12. The value of 2+sqrt(0.09)-root(3)(0.008)-75% of 2.80 is :

    Text Solution

    |

  13. The value of (root(3)(3.5)+root(3)(2.5)){(root(3)(3.5))^(2)-root(3)(8....

    Text Solution

    |

  14. The value of (3+2sqrt(2))^(-3)+(3-2sqrt(2))^(-3) is

    Text Solution

    |

  15. (sqrt(5))/(sqrt(3)+sqrt(2))-(3sqrt(3))/(sqrt(5)+sqrt(2))+(2sqrt(2))/(s...

    Text Solution

    |

  16. When (4+sqrt(7)) is presented in the form of perfect square it will be...

    Text Solution

    |

  17. The value of (1)/(sqrt(3.25)+sqrt(2.25))+(1)/(sqrt(4.25)+sqrt(3.25))+(...

    Text Solution

    |

  18. The Simplified form of (2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5...

    Text Solution

    |

  19. ((1)/(2))^(-(1)/(2)) is equal to

    Text Solution

    |

  20. (1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/...

    Text Solution

    |