Home
Class 14
MATHS
The value of : sqrt(-sqrt(3)+sqrt(3+8sqr...

The value of : `sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3))))` is

A

`1`

B

`2`

C

`3`

D

`8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{-\sqrt{3} + \sqrt{3 + 8\sqrt{7 + 4\sqrt{3}}}} \), we will break it down step by step. ### Step 1: Simplify the inner expression \( \sqrt{7 + 4\sqrt{3}} \) To simplify \( \sqrt{7 + 4\sqrt{3}} \), we can express it in the form \( \sqrt{a} + \sqrt{b} \). Assume: \[ \sqrt{7 + 4\sqrt{3}} = \sqrt{a} + \sqrt{b} \] Squaring both sides gives: \[ 7 + 4\sqrt{3} = a + b + 2\sqrt{ab} \] From this, we can equate the rational and irrational parts: 1. \( a + b = 7 \) 2. \( 2\sqrt{ab} = 4\sqrt{3} \) → \( \sqrt{ab} = 2\sqrt{3} \) → \( ab = 12 \) Now we have the system of equations: 1. \( a + b = 7 \) 2. \( ab = 12 \) ### Step 2: Solve for \( a \) and \( b \) The values of \( a \) and \( b \) can be found using the quadratic equation: \[ x^2 - (a+b)x + ab = 0 \implies x^2 - 7x + 12 = 0 \] Using the quadratic formula: \[ x = \frac{7 \pm \sqrt{7^2 - 4 \cdot 12}}{2} = \frac{7 \pm \sqrt{49 - 48}}{2} = \frac{7 \pm 1}{2} \] This gives: \[ x = 4 \quad \text{or} \quad x = 3 \] Thus, \( a = 4 \) and \( b = 3 \) (or vice versa). ### Step 3: Substitute back to find \( \sqrt{7 + 4\sqrt{3}} \) Now we have: \[ \sqrt{7 + 4\sqrt{3}} = \sqrt{4} + \sqrt{3} = 2 + \sqrt{3} \] ### Step 4: Substitute back into the original expression Now substitute \( \sqrt{7 + 4\sqrt{3}} \) back into the expression: \[ \sqrt{3 + 8\sqrt{7 + 4\sqrt{3}}} = \sqrt{3 + 8(2 + \sqrt{3})} \] Calculating this gives: \[ = \sqrt{3 + 16 + 8\sqrt{3}} = \sqrt{19 + 8\sqrt{3}} \] ### Step 5: Simplify \( \sqrt{19 + 8\sqrt{3}} \) Assume: \[ \sqrt{19 + 8\sqrt{3}} = \sqrt{a} + \sqrt{b} \] Squaring both sides gives: \[ 19 + 8\sqrt{3} = a + b + 2\sqrt{ab} \] From this, we equate: 1. \( a + b = 19 \) 2. \( 2\sqrt{ab} = 8\sqrt{3} \) → \( \sqrt{ab} = 4\sqrt{3} \) → \( ab = 48 \) ### Step 6: Solve for \( a \) and \( b \) again Using the quadratic equation: \[ x^2 - 19x + 48 = 0 \] Using the quadratic formula: \[ x = \frac{19 \pm \sqrt{19^2 - 4 \cdot 48}}{2} = \frac{19 \pm \sqrt{361 - 192}}{2} = \frac{19 \pm \sqrt{169}}{2} = \frac{19 \pm 13}{2} \] This gives: \[ x = 16 \quad \text{or} \quad x = 3 \] Thus, \( a = 16 \) and \( b = 3 \) (or vice versa). ### Step 7: Substitute back to find \( \sqrt{19 + 8\sqrt{3}} \) Now we have: \[ \sqrt{19 + 8\sqrt{3}} = \sqrt{16} + \sqrt{3} = 4 + \sqrt{3} \] ### Step 8: Substitute into the original expression Now substitute back into the original expression: \[ \sqrt{-\sqrt{3} + (4 + \sqrt{3})} = \sqrt{4} = 2 \] ### Final Result Thus, the value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

The value of : sqrt(-sqrt3 + sqrt(3+8sqrt(7 + 4sqrt(3)))) is

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

(sqrt(8)-sqrt(3))(-4+sqrt(3))

The value of (4+3sqrt(3))/(7+4 sqrt(3)) is

The value of sqrt((3+sqrt(8))/(3-sqrt(8))) is

If x= sqrt(-sqrt3+ sqrt(3+8 sqrt(7+4 sqrt3))) where x>0, then the value of x is equal to: यदि x= sqrt(-sqrt3+ sqrt(3+8 sqrt(7+4 sqrt3))) तो x का मान ज्ञात करे: जहा x>0

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (256)^(0.16) xx (16)^(0.18) is equal to

    Text Solution

    |

  2. The value of ((243)^(0.13)xx(243)^(0.07))/((7)^(0.25)xx(49)^(0.075)xx(...

    Text Solution

    |

  3. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  4. The value of ((0.67xx0.67xx0.67)-(0.33xx0.33xx0.33))/((0.67xx0.67)+(0....

    Text Solution

    |

  5. The approximate value of (3sqrt(12))/(2sqrt(28))-:(2sqrt(21))/(sqrt...

    Text Solution

    |

  6. The value of 2+sqrt(0.09)-root(3)(0.008)-75% of 2.80 is :

    Text Solution

    |

  7. The value of (root(3)(3.5)+root(3)(2.5)){(root(3)(3.5))^(2)-root(3)(8....

    Text Solution

    |

  8. The value of (3+2sqrt(2))^(-3)+(3-2sqrt(2))^(-3) is

    Text Solution

    |

  9. (sqrt(5))/(sqrt(3)+sqrt(2))-(3sqrt(3))/(sqrt(5)+sqrt(2))+(2sqrt(2))/(s...

    Text Solution

    |

  10. When (4+sqrt(7)) is presented in the form of perfect square it will be...

    Text Solution

    |

  11. The value of (1)/(sqrt(3.25)+sqrt(2.25))+(1)/(sqrt(4.25)+sqrt(3.25))+(...

    Text Solution

    |

  12. The Simplified form of (2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5...

    Text Solution

    |

  13. ((1)/(2))^(-(1)/(2)) is equal to

    Text Solution

    |

  14. (1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/...

    Text Solution

    |

  15. (16)^(0.16) xx (16)^(0.04) xx (2)^(0.2) is equal to :

    Text Solution

    |

  16. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  17. (3+(1)/(sqrt(3))+(1)/(3+sqrt(3))+(1)/(sqrt(3)-3)) is equal to

    Text Solution

    |

  18. sqrt(8-2sqrt(15)) is equal to :

    Text Solution

    |

  19. (0.04)^(-(1.5)) is equal to

    Text Solution

    |

  20. The value of root(3)(1372)xxroot(3)(1458)divroot(3)(343) is equal to

    Text Solution

    |