Home
Class 14
MATHS
(sqrt(5))/(sqrt(3)+sqrt(2))-(3sqrt(3))/(...

`(sqrt(5))/(sqrt(3)+sqrt(2))-(3sqrt(3))/(sqrt(5)+sqrt(2))+(2sqrt(2))/(sqrt(5)+sqrt(3))` is equal to :

A

`0`

B

`2sqrt(15)`

C

`2sqrt(10)`

D

`2sqrt(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sqrt{5}}{\sqrt{3} + \sqrt{2}} - \frac{3\sqrt{3}}{\sqrt{5} + \sqrt{2}} + \frac{2\sqrt{2}}{\sqrt{5} + \sqrt{3}}, \] we will rationalize each term individually. ### Step 1: Rationalize the first term For the first term \(\frac{\sqrt{5}}{\sqrt{3} + \sqrt{2}}\), we multiply the numerator and the denominator by the conjugate of the denominator, which is \(\sqrt{3} - \sqrt{2}\): \[ \frac{\sqrt{5}(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] The denominator simplifies as follows: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1. \] Thus, the first term simplifies to: \[ \sqrt{5}(\sqrt{3} - \sqrt{2}) = \sqrt{15} - \sqrt{10}. \] ### Step 2: Rationalize the second term Now, for the second term \(-\frac{3\sqrt{3}}{\sqrt{5} + \sqrt{2}}\), we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{5} - \sqrt{2}\): \[ -\frac{3\sqrt{3}(\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})}. \] The denominator simplifies as follows: \[ (\sqrt{5})^2 - (\sqrt{2})^2 = 5 - 2 = 3. \] Thus, the second term simplifies to: \[ -\frac{3\sqrt{3}(\sqrt{5} - \sqrt{2})}{3} = -\sqrt{3}(\sqrt{5} - \sqrt{2}) = -\sqrt{15} + \sqrt{6}. \] ### Step 3: Rationalize the third term For the third term \(\frac{2\sqrt{2}}{\sqrt{5} + \sqrt{3}}\), we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{5} - \sqrt{3}\): \[ \frac{2\sqrt{2}(\sqrt{5} - \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})}. \] The denominator simplifies as follows: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2. \] Thus, the third term simplifies to: \[ \frac{2\sqrt{2}(\sqrt{5} - \sqrt{3})}{2} = \sqrt{2}(\sqrt{5} - \sqrt{3}) = \sqrt{10} - \sqrt{6}. \] ### Step 4: Combine all terms Now we combine all the simplified terms: \[ (\sqrt{15} - \sqrt{10}) + (-\sqrt{15} + \sqrt{6}) + (\sqrt{10} - \sqrt{6}). \] Combining like terms: - The \(\sqrt{15}\) terms: \(\sqrt{15} - \sqrt{15} = 0\). - The \(\sqrt{10}\) terms: \(-\sqrt{10} + \sqrt{10} = 0\). - The \(\sqrt{6}\) terms: \(\sqrt{6} - \sqrt{6} = 0\). Thus, the entire expression simplifies to: \[ 0. \] ### Final Answer The expression is equal to \(0\).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(sqrt(5)-2)(sqrt(3)-sqrt(5))

(1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))

(sqrt(5)+sqrt(3))((3sqrt(3))/(sqrt(5)+sqrt(2))-sqrt(5)/(sqrt(3)+sqrt(2))) is equal to :

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The value of (root(3)(3.5)+root(3)(2.5)){(root(3)(3.5))^(2)-root(3)(8....

    Text Solution

    |

  2. The value of (3+2sqrt(2))^(-3)+(3-2sqrt(2))^(-3) is

    Text Solution

    |

  3. (sqrt(5))/(sqrt(3)+sqrt(2))-(3sqrt(3))/(sqrt(5)+sqrt(2))+(2sqrt(2))/(s...

    Text Solution

    |

  4. When (4+sqrt(7)) is presented in the form of perfect square it will be...

    Text Solution

    |

  5. The value of (1)/(sqrt(3.25)+sqrt(2.25))+(1)/(sqrt(4.25)+sqrt(3.25))+(...

    Text Solution

    |

  6. The Simplified form of (2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5...

    Text Solution

    |

  7. ((1)/(2))^(-(1)/(2)) is equal to

    Text Solution

    |

  8. (1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/...

    Text Solution

    |

  9. (16)^(0.16) xx (16)^(0.04) xx (2)^(0.2) is equal to :

    Text Solution

    |

  10. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  11. (3+(1)/(sqrt(3))+(1)/(3+sqrt(3))+(1)/(sqrt(3)-3)) is equal to

    Text Solution

    |

  12. sqrt(8-2sqrt(15)) is equal to :

    Text Solution

    |

  13. (0.04)^(-(1.5)) is equal to

    Text Solution

    |

  14. The value of root(3)(1372)xxroot(3)(1458)divroot(3)(343) is equal to

    Text Solution

    |

  15. The value of (1)/(1+sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)+sqrt(3)) is :

    Text Solution

    |

  16. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  17. (3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3)) is equal to

    Text Solution

    |

  18. The value of (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+...

    Text Solution

    |

  19. The square root of 14+6sqrt(5) is

    Text Solution

    |

  20. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |