Home
Class 14
MATHS
The value of (1)/(sqrt(3.25)+sqrt(2.25))...

The value of `(1)/(sqrt(3.25)+sqrt(2.25))+(1)/(sqrt(4.25)+sqrt(3.25))+(1)/(sqrt(5.25)+sqrt(4.25))+(1)/(sqrt(6.25)+sqrt(5.25))` is

A

`1.00`

B

`1.25`

C

`1.50`

D

`2.25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{3.25} + \sqrt{2.25}} + \frac{1}{\sqrt{4.25} + \sqrt{3.25}} + \frac{1}{\sqrt{5.25} + \sqrt{4.25}} + \frac{1}{\sqrt{6.25} + \sqrt{5.25}}, \] we will simplify each term step by step. ### Step 1: Simplify the first term We start with the first term: \[ \frac{1}{\sqrt{3.25} + \sqrt{2.25}}. \] To simplify this, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{\sqrt{3.25} + \sqrt{2.25}} \cdot \frac{\sqrt{3.25} - \sqrt{2.25}}{\sqrt{3.25} - \sqrt{2.25}} = \frac{\sqrt{3.25} - \sqrt{2.25}}{(\sqrt{3.25})^2 - (\sqrt{2.25})^2}. \] Calculating the squares: \[ (\sqrt{3.25})^2 = 3.25 \quad \text{and} \quad (\sqrt{2.25})^2 = 2.25. \] Thus, \[ 3.25 - 2.25 = 1. \] So, we have: \[ \frac{\sqrt{3.25} - \sqrt{2.25}}{1} = \sqrt{3.25} - \sqrt{2.25}. \] ### Step 2: Simplify the second term Now, we simplify the second term: \[ \frac{1}{\sqrt{4.25} + \sqrt{3.25}}. \] Using the same method: \[ \frac{1}{\sqrt{4.25} + \sqrt{3.25}} \cdot \frac{\sqrt{4.25} - \sqrt{3.25}}{\sqrt{4.25} - \sqrt{3.25}} = \frac{\sqrt{4.25} - \sqrt{3.25}}{(\sqrt{4.25})^2 - (\sqrt{3.25})^2}. \] Calculating the squares: \[ (\sqrt{4.25})^2 = 4.25 \quad \text{and} \quad (\sqrt{3.25})^2 = 3.25. \] Thus, \[ 4.25 - 3.25 = 1. \] So, we have: \[ \frac{\sqrt{4.25} - \sqrt{3.25}}{1} = \sqrt{4.25} - \sqrt{3.25}. \] ### Step 3: Simplify the third term Next, we simplify the third term: \[ \frac{1}{\sqrt{5.25} + \sqrt{4.25}}. \] Using the same method: \[ \frac{1}{\sqrt{5.25} + \sqrt{4.25}} \cdot \frac{\sqrt{5.25} - \sqrt{4.25}}{\sqrt{5.25} - \sqrt{4.25}} = \frac{\sqrt{5.25} - \sqrt{4.25}}{(\sqrt{5.25})^2 - (\sqrt{4.25})^2}. \] Calculating the squares: \[ (\sqrt{5.25})^2 = 5.25 \quad \text{and} \quad (\sqrt{4.25})^2 = 4.25. \] Thus, \[ 5.25 - 4.25 = 1. \] So, we have: \[ \frac{\sqrt{5.25} - \sqrt{4.25}}{1} = \sqrt{5.25} - \sqrt{4.25}. \] ### Step 4: Simplify the fourth term Finally, we simplify the fourth term: \[ \frac{1}{\sqrt{6.25} + \sqrt{5.25}}. \] Using the same method: \[ \frac{1}{\sqrt{6.25} + \sqrt{5.25}} \cdot \frac{\sqrt{6.25} - \sqrt{5.25}}{\sqrt{6.25} - \sqrt{5.25}} = \frac{\sqrt{6.25} - \sqrt{5.25}}{(\sqrt{6.25})^2 - (\sqrt{5.25})^2}. \] Calculating the squares: \[ (\sqrt{6.25})^2 = 6.25 \quad \text{and} \quad (\sqrt{5.25})^2 = 5.25. \] Thus, \[ 6.25 - 5.25 = 1. \] So, we have: \[ \frac{\sqrt{6.25} - \sqrt{5.25}}{1} = \sqrt{6.25} - \sqrt{5.25}. \] ### Step 5: Combine all terms Now we can combine all the simplified terms: \[ (\sqrt{3.25} - \sqrt{2.25}) + (\sqrt{4.25} - \sqrt{3.25}) + (\sqrt{5.25} - \sqrt{4.25}) + (\sqrt{6.25} - \sqrt{5.25}). \] Notice that this is a telescoping series. Most terms cancel out: \[ -\sqrt{2.25} + \sqrt{6.25}. \] Calculating the remaining terms: \[ \sqrt{6.25} = 2.5 \quad \text{and} \quad \sqrt{2.25} = 1.5. \] Thus, \[ 2.5 - 1.5 = 1. \] ### Final Answer The value of the expression is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(25.3)

sqrt(-25)sqrt(36)

The value of sqrt(0.25) is.

The value of (10 sqrt(6.25))/(sqrt(6.25) - 0.5) is:

Find the value of sqrt(-16) xx sqrt(-25) .

Find the value of (1)/(1+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+...+(1)/(sqrt(23)+sqrt(25))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (sqrt(5))/(sqrt(3)+sqrt(2))-(3sqrt(3))/(sqrt(5)+sqrt(2))+(2sqrt(2))/(s...

    Text Solution

    |

  2. When (4+sqrt(7)) is presented in the form of perfect square it will be...

    Text Solution

    |

  3. The value of (1)/(sqrt(3.25)+sqrt(2.25))+(1)/(sqrt(4.25)+sqrt(3.25))+(...

    Text Solution

    |

  4. The Simplified form of (2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5...

    Text Solution

    |

  5. ((1)/(2))^(-(1)/(2)) is equal to

    Text Solution

    |

  6. (1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/...

    Text Solution

    |

  7. (16)^(0.16) xx (16)^(0.04) xx (2)^(0.2) is equal to :

    Text Solution

    |

  8. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  9. (3+(1)/(sqrt(3))+(1)/(3+sqrt(3))+(1)/(sqrt(3)-3)) is equal to

    Text Solution

    |

  10. sqrt(8-2sqrt(15)) is equal to :

    Text Solution

    |

  11. (0.04)^(-(1.5)) is equal to

    Text Solution

    |

  12. The value of root(3)(1372)xxroot(3)(1458)divroot(3)(343) is equal to

    Text Solution

    |

  13. The value of (1)/(1+sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)+sqrt(3)) is :

    Text Solution

    |

  14. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  15. (3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3)) is equal to

    Text Solution

    |

  16. The value of (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+...

    Text Solution

    |

  17. The square root of 14+6sqrt(5) is

    Text Solution

    |

  18. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  19. Simplify ((3/(2+sqrt3)-2/(2-sqrt3)))/(2-5sqrt3)

    Text Solution

    |

  20. (64)^(-(2)/(3))xx((1)/(4))^(-2) is equal to :

    Text Solution

    |