Home
Class 14
MATHS
The Simplified form of (2)/(sqrt(7)+sqrt...

The Simplified form of `(2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5)/(sqrt(12)-sqrt(7))` is :

A

`5`

B

`2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{2}{\sqrt{7}+\sqrt{5}}+\frac{7}{\sqrt{12}-\sqrt{5}}-\frac{5}{\sqrt{12}-\sqrt{7}}\), we will follow these steps: ### Step 1: Rationalize the first term We start with the first term \(\frac{2}{\sqrt{7}+\sqrt{5}}\). To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{7}-\sqrt{5}\): \[ \frac{2}{\sqrt{7}+\sqrt{5}} \cdot \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}} = \frac{2(\sqrt{7}-\sqrt{5})}{(\sqrt{7})^2-(\sqrt{5})^2} = \frac{2(\sqrt{7}-\sqrt{5})}{7-5} = \frac{2(\sqrt{7}-\sqrt{5})}{2} = \sqrt{7}-\sqrt{5} \] **Hint for Step 1:** Use the conjugate of the denominator to eliminate the square roots in the denominator. ### Step 2: Rationalize the second term Next, we simplify the second term \(\frac{7}{\sqrt{12}-\sqrt{5}}\) by multiplying by the conjugate \(\sqrt{12}+\sqrt{5}\): \[ \frac{7}{\sqrt{12}-\sqrt{5}} \cdot \frac{\sqrt{12}+\sqrt{5}}{\sqrt{12}+\sqrt{5}} = \frac{7(\sqrt{12}+\sqrt{5})}{(\sqrt{12})^2-(\sqrt{5})^2} = \frac{7(\sqrt{12}+\sqrt{5})}{12-5} = \frac{7(\sqrt{12}+\sqrt{5})}{7} = \sqrt{12}+\sqrt{5} \] **Hint for Step 2:** Again, use the conjugate to rationalize the denominator. ### Step 3: Rationalize the third term Now, we simplify the third term \(-\frac{5}{\sqrt{12}-\sqrt{7}}\) by multiplying by the conjugate \(\sqrt{12}+\sqrt{7}\): \[ -\frac{5}{\sqrt{12}-\sqrt{7}} \cdot \frac{\sqrt{12}+\sqrt{7}}{\sqrt{12}+\sqrt{7}} = -\frac{5(\sqrt{12}+\sqrt{7})}{(\sqrt{12})^2-(\sqrt{7})^2} = -\frac{5(\sqrt{12}+\sqrt{7})}{12-7} = -\frac{5(\sqrt{12}+\sqrt{7})}{5} = -(\sqrt{12}+\sqrt{7}) \] **Hint for Step 3:** Use the conjugate to rationalize the denominator, and remember to distribute the negative sign. ### Step 4: Combine all the terms Now we can combine all the simplified terms: \[ \sqrt{7}-\sqrt{5} + \sqrt{12}+\sqrt{5} - (\sqrt{12}+\sqrt{7}) \] This simplifies to: \[ \sqrt{7}-\sqrt{5} + \sqrt{12}+\sqrt{5} - \sqrt{12} - \sqrt{7} \] ### Step 5: Cancel out like terms Notice that \(\sqrt{7}\) and \(-\sqrt{7}\) cancel out, \(\sqrt{12}\) and \(-\sqrt{12}\) cancel out, and \(-\sqrt{5}\) and \(+\sqrt{5}\) cancel out: \[ 0 \] Thus, the simplified form of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

5/(sqrt(5)-sqrt(7))

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

Evaluate (sqrt(7)-sqrt(5))/ (sqrt(7)-sqrt(5))

Evaluate (sqrt(5)-sqrt(3))/(sqrt(2)+sqrt(7))

(1)/(2sqrt(7)+sqrt(5))-(1)/(2sqrt(5)+sqrt(7)) simplify

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=

(2sqrt(7))/(sqrt(5)-sqrt(3))

Simplify (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+sqrt(35)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. When (4+sqrt(7)) is presented in the form of perfect square it will be...

    Text Solution

    |

  2. The value of (1)/(sqrt(3.25)+sqrt(2.25))+(1)/(sqrt(4.25)+sqrt(3.25))+(...

    Text Solution

    |

  3. The Simplified form of (2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5...

    Text Solution

    |

  4. ((1)/(2))^(-(1)/(2)) is equal to

    Text Solution

    |

  5. (1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/...

    Text Solution

    |

  6. (16)^(0.16) xx (16)^(0.04) xx (2)^(0.2) is equal to :

    Text Solution

    |

  7. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  8. (3+(1)/(sqrt(3))+(1)/(3+sqrt(3))+(1)/(sqrt(3)-3)) is equal to

    Text Solution

    |

  9. sqrt(8-2sqrt(15)) is equal to :

    Text Solution

    |

  10. (0.04)^(-(1.5)) is equal to

    Text Solution

    |

  11. The value of root(3)(1372)xxroot(3)(1458)divroot(3)(343) is equal to

    Text Solution

    |

  12. The value of (1)/(1+sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)+sqrt(3)) is :

    Text Solution

    |

  13. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  14. (3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3)) is equal to

    Text Solution

    |

  15. The value of (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+...

    Text Solution

    |

  16. The square root of 14+6sqrt(5) is

    Text Solution

    |

  17. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  18. Simplify ((3/(2+sqrt3)-2/(2-sqrt3)))/(2-5sqrt3)

    Text Solution

    |

  19. (64)^(-(2)/(3))xx((1)/(4))^(-2) is equal to :

    Text Solution

    |

  20. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |