Home
Class 14
MATHS
(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(...

`(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))` is equal to

A

`sqrt(3)`

B

`3sqrt(3)`

C

`3-sqrt(3)`

D

`5-sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{6}} + \frac{1}{\sqrt{6}+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{9}}, \] we will rationalize each term in the series. ### Step 1: Rationalize the first term For the first term, \[ \frac{1}{\sqrt{3}+\sqrt{4}}, \] we multiply the numerator and denominator by \(\sqrt{4}-\sqrt{3}\): \[ \frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})} = \frac{\sqrt{4}-\sqrt{3}}{4 - 3} = \sqrt{4} - \sqrt{3} = 2 - \sqrt{3}. \] ### Step 2: Rationalize the second term For the second term, \[ \frac{1}{\sqrt{4}+\sqrt{5}}, \] we multiply the numerator and denominator by \(\sqrt{5}-\sqrt{4}\): \[ \frac{\sqrt{5}-\sqrt{4}}{(\sqrt{4}+\sqrt{5})(\sqrt{5}-\sqrt{4})} = \frac{\sqrt{5}-\sqrt{4}}{5 - 4} = \sqrt{5} - \sqrt{4} = \sqrt{5} - 2. \] ### Step 3: Rationalize the third term For the third term, \[ \frac{1}{\sqrt{5}+\sqrt{6}}, \] we multiply the numerator and denominator by \(\sqrt{6}-\sqrt{5}\): \[ \frac{\sqrt{6}-\sqrt{5}}{(\sqrt{5}+\sqrt{6})(\sqrt{6}-\sqrt{5})} = \frac{\sqrt{6}-\sqrt{5}}{6 - 5} = \sqrt{6} - \sqrt{5}. \] ### Step 4: Rationalize the fourth term For the fourth term, \[ \frac{1}{\sqrt{6}+\sqrt{7}}, \] we multiply the numerator and denominator by \(\sqrt{7}-\sqrt{6}\): \[ \frac{\sqrt{7}-\sqrt{6}}{(\sqrt{6}+\sqrt{7})(\sqrt{7}-\sqrt{6})} = \frac{\sqrt{7}-\sqrt{6}}{7 - 6} = \sqrt{7} - \sqrt{6}. \] ### Step 5: Rationalize the fifth term For the fifth term, \[ \frac{1}{\sqrt{7}+\sqrt{8}}, \] we multiply the numerator and denominator by \(\sqrt{8}-\sqrt{7}\): \[ \frac{\sqrt{8}-\sqrt{7}}{(\sqrt{7}+\sqrt{8})(\sqrt{8}-\sqrt{7})} = \frac{\sqrt{8}-\sqrt{7}}{8 - 7} = \sqrt{8} - \sqrt{7}. \] ### Step 6: Rationalize the sixth term For the sixth term, \[ \frac{1}{\sqrt{8}+\sqrt{9}}, \] we multiply the numerator and denominator by \(\sqrt{9}-\sqrt{8}\): \[ \frac{\sqrt{9}-\sqrt{8}}{(\sqrt{8}+\sqrt{9})(\sqrt{9}-\sqrt{8})} = \frac{\sqrt{9}-\sqrt{8}}{9 - 8} = \sqrt{9} - \sqrt{8} = 3 - \sqrt{8}. \] ### Step 7: Combine all the terms Now we can combine all the rationalized terms: \[ (2 - \sqrt{3}) + (\sqrt{5} - 2) + (\sqrt{6} - \sqrt{5}) + (\sqrt{7} - \sqrt{6}) + (\sqrt{8} - \sqrt{7}) + (3 - \sqrt{8}). \] Notice that all the intermediate terms cancel out: \[ 2 - \sqrt{3} + \sqrt{5} - 2 + \sqrt{6} - \sqrt{5} + \sqrt{7} - \sqrt{6} + \sqrt{8} - \sqrt{7} + 3 - \sqrt{8} = 3 - \sqrt{3}. \] ### Final Result Thus, the final result is: \[ 3 - \sqrt{3}. \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(7)-sqrt(6))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

The value of (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9)) is

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The Simplified form of (2)/(sqrt(7)+sqrt(5))+(7)/(sqrt(12)-sqrt(5))-(5...

    Text Solution

    |

  2. ((1)/(2))^(-(1)/(2)) is equal to

    Text Solution

    |

  3. (1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/...

    Text Solution

    |

  4. (16)^(0.16) xx (16)^(0.04) xx (2)^(0.2) is equal to :

    Text Solution

    |

  5. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  6. (3+(1)/(sqrt(3))+(1)/(3+sqrt(3))+(1)/(sqrt(3)-3)) is equal to

    Text Solution

    |

  7. sqrt(8-2sqrt(15)) is equal to :

    Text Solution

    |

  8. (0.04)^(-(1.5)) is equal to

    Text Solution

    |

  9. The value of root(3)(1372)xxroot(3)(1458)divroot(3)(343) is equal to

    Text Solution

    |

  10. The value of (1)/(1+sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)+sqrt(3)) is :

    Text Solution

    |

  11. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  12. (3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3)) is equal to

    Text Solution

    |

  13. The value of (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+...

    Text Solution

    |

  14. The square root of 14+6sqrt(5) is

    Text Solution

    |

  15. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  16. Simplify ((3/(2+sqrt3)-2/(2-sqrt3)))/(2-5sqrt3)

    Text Solution

    |

  17. (64)^(-(2)/(3))xx((1)/(4))^(-2) is equal to :

    Text Solution

    |

  18. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  19. ((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+...

    Text Solution

    |

  20. ((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+...

    Text Solution

    |