Home
Class 14
MATHS
The value of (1)/(1+sqrt(2)+sqrt(3))+(1)...

The value of `(1)/(1+sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)+sqrt(3))` is :

A

A) `sqrt(2)`

B

B) `sqrt(3)`

C

C) `1`

D

D) `4(sqrt(3)+sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{1 + \sqrt{2} + \sqrt{3}} + \frac{1}{1 - \sqrt{2} + \sqrt{3}}, \] we will follow these steps: ### Step 1: Identify the common denominator The common denominator for the two fractions is the product of the denominators: \[ (1 + \sqrt{2} + \sqrt{3})(1 - \sqrt{2} + \sqrt{3}). \] ### Step 2: Rewrite the fractions We can rewrite the fractions with the common denominator: \[ \frac{(1 - \sqrt{2} + \sqrt{3}) + (1 + \sqrt{2} + \sqrt{3})}{(1 + \sqrt{2} + \sqrt{3})(1 - \sqrt{2} + \sqrt{3})}. \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ (1 - \sqrt{2} + \sqrt{3}) + (1 + \sqrt{2} + \sqrt{3}) = 2 + 2\sqrt{3}. \] ### Step 4: Simplify the denominator Next, we simplify the denominator using the difference of squares: \[ (1 + \sqrt{2} + \sqrt{3})(1 - \sqrt{2} + \sqrt{3}) = (1 + \sqrt{3})^2 - (\sqrt{2})^2. \] Calculating this gives: \[ (1 + \sqrt{3})^2 = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3}, \] and \[ (\sqrt{2})^2 = 2. \] Thus, the denominator becomes: \[ (4 + 2\sqrt{3}) - 2 = 2 + 2\sqrt{3}. \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{2 + 2\sqrt{3}}{2 + 2\sqrt{3}} = 1. \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))

The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+........+(1)/(sqrt(8) + sqrt(9)) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (0.04)^(-(1.5)) is equal to

    Text Solution

    |

  2. The value of root(3)(1372)xxroot(3)(1458)divroot(3)(343) is equal to

    Text Solution

    |

  3. The value of (1)/(1+sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)+sqrt(3)) is :

    Text Solution

    |

  4. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  5. (3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3)) is equal to

    Text Solution

    |

  6. The value of (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+...

    Text Solution

    |

  7. The square root of 14+6sqrt(5) is

    Text Solution

    |

  8. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  9. Simplify ((3/(2+sqrt3)-2/(2-sqrt3)))/(2-5sqrt3)

    Text Solution

    |

  10. (64)^(-(2)/(3))xx((1)/(4))^(-2) is equal to :

    Text Solution

    |

  11. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  12. ((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+...

    Text Solution

    |

  13. ((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+...

    Text Solution

    |

  14. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  15. Simplify : [64^((2)/(3))xx2^(-2)xx8^(0)]^((1)/(2))

    Text Solution

    |

  16. Find the value of 1/(sqrt((12-sqrt(140))))-1/(sqrt((8-sqrt(60))))-2/(s...

    Text Solution

    |

  17. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  18. The value of (243)^(0.16)xx(243)^(0.04) is equal to :

    Text Solution

    |

  19. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  20. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |