Home
Class 14
MATHS
The square root of 14+6sqrt(5) is...

The square root of `14+6sqrt(5)` is

A

`2+sqrt(5)`

B

`3+sqrt(5)`

C

`5+sqrt(3)`

D

`3+2sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of \( 14 + 6\sqrt{5} \), we can express it in the form of a perfect square. Let's break down the steps: ### Step 1: Assume the square root can be expressed as a binomial We assume that: \[ \sqrt{14 + 6\sqrt{5}} = a + b \] where \( a \) and \( b \) are real numbers. ### Step 2: Square both sides Squaring both sides gives us: \[ 14 + 6\sqrt{5} = (a + b)^2 \] Expanding the right side using the formula \( (x + y)^2 = x^2 + 2xy + y^2 \): \[ 14 + 6\sqrt{5} = a^2 + 2ab + b^2 \] ### Step 3: Identify \( a^2 + b^2 \) and \( 2ab \) From the equation, we can separate the rational and irrational parts: - The rational part is \( a^2 + b^2 = 14 \) - The irrational part is \( 2ab = 6\sqrt{5} \) ### Step 4: Solve for \( ab \) From \( 2ab = 6\sqrt{5} \), we can simplify to find \( ab \): \[ ab = 3\sqrt{5} \] ### Step 5: Set up a system of equations Now we have two equations: 1. \( a^2 + b^2 = 14 \) 2. \( ab = 3\sqrt{5} \) ### Step 6: Express \( b \) in terms of \( a \) We can express \( b \) in terms of \( a \) using the equation \( ab = 3\sqrt{5} \): \[ b = \frac{3\sqrt{5}}{a} \] ### Step 7: Substitute \( b \) back into the first equation Substituting \( b \) into the first equation: \[ a^2 + \left(\frac{3\sqrt{5}}{a}\right)^2 = 14 \] This simplifies to: \[ a^2 + \frac{45}{a^2} = 14 \] ### Step 8: Multiply through by \( a^2 \) to eliminate the fraction Multiplying through by \( a^2 \): \[ a^4 - 14a^2 + 45 = 0 \] ### Step 9: Let \( x = a^2 \) and solve the quadratic Let \( x = a^2 \), then we have: \[ x^2 - 14x + 45 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 45}}{2 \cdot 1} \] \[ x = \frac{14 \pm \sqrt{196 - 180}}{2} \] \[ x = \frac{14 \pm \sqrt{16}}{2} \] \[ x = \frac{14 \pm 4}{2} \] Thus, we have two possible values for \( x \): \[ x = \frac{18}{2} = 9 \quad \text{or} \quad x = \frac{10}{2} = 5 \] ### Step 10: Find \( a \) and \( b \) 1. If \( a^2 = 9 \), then \( a = 3 \). 2. If \( a^2 = 5 \), then \( a = \sqrt{5} \). Using \( ab = 3\sqrt{5} \): - If \( a = 3 \), then \( b = \frac{3\sqrt{5}}{3} = \sqrt{5} \). - If \( a = \sqrt{5} \), then \( b = \frac{3\sqrt{5}}{\sqrt{5}} = 3 \). ### Conclusion Thus, we can conclude: \[ \sqrt{14 + 6\sqrt{5}} = 3 + \sqrt{5} \] ### Final Answer The square root of \( 14 + 6\sqrt{5} \) is \( 3 + \sqrt{5} \).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

The positive square root of 14+6sqrt(5) is

The square root of 3+sqrt(5) is

The square root of 33 - 4 sqrt35 is :

The square root of 11-sqrt(120) is given by

What is the square root of 16 + 6sqrt(7) ?

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (3sqrt(2)+2sqrt(3))/(3sqrt(2)-2sqrt(3)) is equal to

    Text Solution

    |

  2. The value of (2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+...

    Text Solution

    |

  3. The square root of 14+6sqrt(5) is

    Text Solution

    |

  4. The simplified value of (3 sqrt(2))/(sqrt(3) + sqrt(6)) - (4 sqrt(3))/...

    Text Solution

    |

  5. Simplify ((3/(2+sqrt3)-2/(2-sqrt3)))/(2-5sqrt3)

    Text Solution

    |

  6. (64)^(-(2)/(3))xx((1)/(4))^(-2) is equal to :

    Text Solution

    |

  7. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  8. ((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+...

    Text Solution

    |

  9. ((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+...

    Text Solution

    |

  10. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  11. Simplify : [64^((2)/(3))xx2^(-2)xx8^(0)]^((1)/(2))

    Text Solution

    |

  12. Find the value of 1/(sqrt((12-sqrt(140))))-1/(sqrt((8-sqrt(60))))-2/(s...

    Text Solution

    |

  13. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  14. The value of (243)^(0.16)xx(243)^(0.04) is equal to :

    Text Solution

    |

  15. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  16. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  17. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  18. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  19. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  20. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |