Home
Class 14
MATHS
((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+...

`((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1))` simplifies to :

A

`2-sqrt(3)`

B

`2+sqrt(3)`

C

`16-sqrt(3)`

D

`40-sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{(2+\sqrt{3})}{(2-\sqrt{3})} + \frac{(2-\sqrt{3})}{(2+\sqrt{3})} + \frac{(\sqrt{3}-1)}{(\sqrt{3}+1)}\), we will follow these steps: ### Step 1: Simplify the first two fractions We start with the first two fractions: \[ \frac{(2+\sqrt{3})}{(2-\sqrt{3})} + \frac{(2-\sqrt{3})}{(2+\sqrt{3})} \] To simplify these fractions, we will rationalize them. We can multiply the first fraction by \(\frac{(2+\sqrt{3})}{(2+\sqrt{3})}\) and the second fraction by \(\frac{(2-\sqrt{3})}{(2-\sqrt{3})}\). ### Step 2: Rationalizing the first fraction For the first fraction: \[ \frac{(2+\sqrt{3})}{(2-\sqrt{3})} \cdot \frac{(2+\sqrt{3})}{(2+\sqrt{3})} = \frac{(2+\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})} \] Calculating the denominator: \[ (2-\sqrt{3})(2+\sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Calculating the numerator: \[ (2+\sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Thus, the first fraction simplifies to: \[ \frac{7 + 4\sqrt{3}}{1} = 7 + 4\sqrt{3} \] ### Step 3: Rationalizing the second fraction Now for the second fraction: \[ \frac{(2-\sqrt{3})}{(2+\sqrt{3})} \cdot \frac{(2-\sqrt{3})}{(2-\sqrt{3})} = \frac{(2-\sqrt{3})^2}{(2+\sqrt{3})(2-\sqrt{3})} \] The denominator is already calculated as 1. Now calculating the numerator: \[ (2-\sqrt{3})^2 = 2^2 - 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} \] Thus, the second fraction simplifies to: \[ \frac{7 - 4\sqrt{3}}{1} = 7 - 4\sqrt{3} \] ### Step 4: Adding the first two fractions Now we add the two simplified fractions: \[ (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) = 7 + 7 + 4\sqrt{3} - 4\sqrt{3} = 14 \] ### Step 5: Simplifying the third fraction Now we simplify the third fraction: \[ \frac{(\sqrt{3}-1)}{(\sqrt{3}+1)} \] We rationalize this by multiplying by \(\frac{(\sqrt{3}-1)}{(\sqrt{3}-1)}\): \[ \frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)} \] Calculating the denominator: \[ (\sqrt{3}+1)(\sqrt{3}-1) = (\sqrt{3})^2 - 1^2 = 3 - 1 = 2 \] Calculating the numerator: \[ (\sqrt{3}-1)^2 = (\sqrt{3})^2 - 2 \cdot \sqrt{3} \cdot 1 + 1^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Thus, the third fraction simplifies to: \[ \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3} \] ### Step 6: Adding all parts together Now we add the result from Step 4 and Step 5: \[ 14 + (2 - \sqrt{3}) = 16 - \sqrt{3} \] ### Final Answer Thus, the expression simplifies to: \[ \boxed{16 - \sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)+1)/(sqrt(3)-1)is

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

(sqrt(3)-sqrt(2))(1)/(sqrt(3))

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (64)^(-(2)/(3))xx((1)/(4))^(-2) is equal to :

    Text Solution

    |

  2. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  3. ((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+...

    Text Solution

    |

  4. ((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+...

    Text Solution

    |

  5. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  6. Simplify : [64^((2)/(3))xx2^(-2)xx8^(0)]^((1)/(2))

    Text Solution

    |

  7. Find the value of 1/(sqrt((12-sqrt(140))))-1/(sqrt((8-sqrt(60))))-2/(s...

    Text Solution

    |

  8. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  9. The value of (243)^(0.16)xx(243)^(0.04) is equal to :

    Text Solution

    |

  10. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  11. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  12. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  13. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  14. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  15. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  16. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  17. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  18. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  19. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  20. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |