Home
Class 14
MATHS
((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2...

`((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)))^(2)` is equal to :

A

A) `64`

B

B) `62`

C

C) `66`

D

D) `68`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\right)^{2} + \left(\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\right)^{2} \] let's break it down step by step. ### Step 1: Define the Variables Let: \[ x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \] Then, we can rewrite the expression as: \[ x^{2} + \frac{1}{x^{2}} \] ### Step 2: Find \(x^{2} + \frac{1}{x^{2}}\) We know that: \[ x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 \] So, we need to find \(x + \frac{1}{x}\). ### Step 3: Calculate \(x + \frac{1}{x}\) First, calculate \(x\): \[ x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \] Now find \(\frac{1}{x}\): \[ \frac{1}{x} = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \] Now add \(x\) and \(\frac{1}{x}\): \[ x + \frac{1}{x} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} + \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \] ### Step 4: Combine the Fractions To combine these fractions, we find a common denominator: \[ x + \frac{1}{x} = \frac{(\sqrt{5} + \sqrt{3})^2 + (\sqrt{5} - \sqrt{3})^2}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} \] ### Step 5: Simplify the Numerator Calculating the numerator: \[ (\sqrt{5} + \sqrt{3})^2 = 5 + 3 + 2\sqrt{15} = 8 + 2\sqrt{15} \] \[ (\sqrt{5} - \sqrt{3})^2 = 5 + 3 - 2\sqrt{15} = 8 - 2\sqrt{15} \] Now add these: \[ (8 + 2\sqrt{15}) + (8 - 2\sqrt{15}) = 16 \] ### Step 6: Simplify the Denominator The denominator is: \[ (\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3}) = 5 - 3 = 2 \] ### Step 7: Final Calculation for \(x + \frac{1}{x}\) Thus, \[ x + \frac{1}{x} = \frac{16}{2} = 8 \] ### Step 8: Calculate \(x^{2} + \frac{1}{x^{2}}\) Now substitute back into the equation: \[ x^{2} + \frac{1}{x^{2}} = (8)^{2} - 2 = 64 - 2 = 62 \] ### Final Answer The value of the expression is: \[ \boxed{62} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

simplify (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) Is equal to :

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-sqrt(2))(sqrt(2)-sqrt(3)) (sqrt(5)-sqrt(3))^(2)

(sqrt(5)-2)(sqrt(3)-sqrt(5))

If x=((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) and y=((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))), find the value of (x^(2)+y^(2))

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  2. ((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+...

    Text Solution

    |

  3. ((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+...

    Text Solution

    |

  4. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  5. Simplify : [64^((2)/(3))xx2^(-2)xx8^(0)]^((1)/(2))

    Text Solution

    |

  6. Find the value of 1/(sqrt((12-sqrt(140))))-1/(sqrt((8-sqrt(60))))-2/(s...

    Text Solution

    |

  7. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  8. The value of (243)^(0.16)xx(243)^(0.04) is equal to :

    Text Solution

    |

  9. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  10. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  11. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  12. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  13. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  14. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  15. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  16. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  17. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  18. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  19. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  20. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |