Home
Class 14
MATHS
Simplify : [64^((2)/(3))xx2^(-2)xx8^(0)]...

Simplify : `[64^((2)/(3))xx2^(-2)xx8^(0)]^((1)/(2))`

A

a) `0`

B

b) `1`

C

c) `2`

D

d) `(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \([64^{(2/3)} \times 2^{-2} \times 8^{0}]^{(1/2)}\), we will follow these steps: ### Step 1: Simplify each component inside the brackets 1. **Calculate \(64^{(2/3)}\)**: - We know that \(64 = 4^3\), so we can rewrite it as: \[ 64^{(2/3)} = (4^3)^{(2/3)} = 4^{(3 \cdot \frac{2}{3})} = 4^2 = 16 \] 2. **Calculate \(2^{-2}\)**: - This is simply: \[ 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \] 3. **Calculate \(8^{0}\)**: - Any number raised to the power of 0 is 1: \[ 8^{0} = 1 \] ### Step 2: Combine the results Now we can combine the results from Step 1: \[ 64^{(2/3)} \times 2^{-2} \times 8^{0} = 16 \times \frac{1}{4} \times 1 \] ### Step 3: Simplify the multiplication 1. **Calculate \(16 \times \frac{1}{4}\)**: \[ 16 \times \frac{1}{4} = \frac{16}{4} = 4 \] ### Step 4: Apply the outer exponent Now we apply the outer exponent \((1/2)\): \[ [4]^{(1/2)} = \sqrt{4} = 2 \] ### Final Answer Thus, the simplified value of the expression \([64^{(2/3)} \times 2^{-2} \times 8^{0}]^{(1/2)}\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify : [64^(2/3) xx 2^(-2)-:8^0]^(1/2)

Simplify : 2^((2)/(3))xx2^((1)/(3))

Simplify : 7^(2)xx2^2

Simplify: (2^(5)-:2^(8))xx2^(-7)

Simplify: 7^(2)xx2^(2)

Simplify : 0xx10^2

Simplify : 2^(4)xx3^2

Simplify : (3 xx 2)^4

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. ((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)))^(2)+((sqrt(5)-sqrt(3))/(sqrt(5)+...

    Text Solution

    |

  2. The value of sqrt(((sqrt12-sqrt8)(sqrt3+sqrt2))/(5+sqrt(24))) is-

    Text Solution

    |

  3. Simplify : [64^((2)/(3))xx2^(-2)xx8^(0)]^((1)/(2))

    Text Solution

    |

  4. Find the value of 1/(sqrt((12-sqrt(140))))-1/(sqrt((8-sqrt(60))))-2/(s...

    Text Solution

    |

  5. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  6. The value of (243)^(0.16)xx(243)^(0.04) is equal to :

    Text Solution

    |

  7. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  8. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  9. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  10. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  11. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  12. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  13. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  14. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  15. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  16. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  17. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  18. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  19. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  20. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |