Home
Class 14
MATHS
(3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplif...

`(3^(0)+3^(-1))/(3^(-1)-3^(0))` is simplified to

A

`-2`

B

`-1`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3^{0} + 3^{-1}) / (3^{-1} - 3^{0})\), we can follow these steps: ### Step 1: Simplify \(3^{0}\) and \(3^{-1}\) We know that: - \(3^{0} = 1\) - \(3^{-1} = \frac{1}{3}\) So we can rewrite the expression as: \[ \frac{(1 + \frac{1}{3})}{(\frac{1}{3} - 1)} \] ### Step 2: Simplify the numerator Now, let's simplify the numerator: \[ 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} \] ### Step 3: Simplify the denominator Next, we simplify the denominator: \[ \frac{1}{3} - 1 = \frac{1}{3} - \frac{3}{3} = \frac{1 - 3}{3} = \frac{-2}{3} \] ### Step 4: Substitute back into the expression Now we substitute the simplified numerator and denominator back into the expression: \[ \frac{\frac{4}{3}}{\frac{-2}{3}} \] ### Step 5: Simplify the fraction To simplify this fraction, we multiply by the reciprocal of the denominator: \[ \frac{4}{3} \times \frac{3}{-2} = \frac{4 \cdot 3}{3 \cdot -2} = \frac{4}{-2} = -2 \] ### Final Answer Thus, the simplified form of the expression \((3^{0} + 3^{-1}) / (3^{-1} - 3^{0})\) is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(2)/(2+(2)/(3+(2)/(3+(2)/(3)))xx0.39) is simplified to (1)/(3)(b)2 (c) 6 (d) None of these

((0.96)^3 - (0.1)^3)/((0.96)^2 + 0.096 + (0.1)^2) is simplified to :

Simplify (1^(0)+3^(0))xx(8^(0)-5^(0))

Simplify (3^(-1)xx3^(-2))-:3^(-3)

The value of expression ((0.6)^(0)-(0.1)^(-1))/(((3)/(2^(3)))^(-1).((3)/(2))^(3)+(-(1)/(3))^(-1)) is

The value of (0.16)^("log"_(0.25)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The value of sqrt(11+2sqrt(30))-1/(sqrt(11+2sqrt(30))) is

    Text Solution

    |

  2. The value of (243)^(0.16)xx(243)^(0.04) is equal to :

    Text Solution

    |

  3. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  4. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  5. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  6. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  7. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  8. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  9. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  10. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  11. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  12. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  13. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  14. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  15. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  16. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  17. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  18. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  19. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  20. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |