Home
Class 14
MATHS
[(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt...

`[(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))]` in simplified form equals to :

A

`1`

B

`sqrt(2)`

C

`(1)/(sqrt(2))`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left[\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}+\frac{1}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\right]\), we can follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((\sqrt{2}+\sqrt{3}-\sqrt{5})(\sqrt{2}-\sqrt{3}-\sqrt{5})\). ### Step 2: Rewrite the expression We can rewrite the expression as: \[ \frac{(\sqrt{2}-\sqrt{3}-\sqrt{5}) + (\sqrt{2}+\sqrt{3}-\sqrt{5})}{(\sqrt{2}+\sqrt{3}-\sqrt{5})(\sqrt{2}-\sqrt{3}-\sqrt{5})} \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ (\sqrt{2}-\sqrt{3}-\sqrt{5}) + (\sqrt{2}+\sqrt{3}-\sqrt{5}) = 2\sqrt{2} - 2\sqrt{5} \] ### Step 4: Simplify the denominator Next, we simplify the denominator using the difference of squares: \[ (\sqrt{2})^2 - (\sqrt{3}+\sqrt{5})^2 = 2 - (3 + 5 + 2\sqrt{15}) = 2 - 8 - 2\sqrt{15} = -6 - 2\sqrt{15} \] ### Step 5: Combine the results Now, we can combine the results: \[ \frac{2(\sqrt{2}-\sqrt{5})}{-6 - 2\sqrt{15}} \] ### Step 6: Factor out common terms Factor out -2 from the denominator: \[ \frac{2(\sqrt{2}-\sqrt{5})}{-2(3+\sqrt{15})} = \frac{\sqrt{2}-\sqrt{5}}{-(3+\sqrt{15})} \] ### Step 7: Final simplification This can be rewritten as: \[ -\frac{\sqrt{2}-\sqrt{5}}{3+\sqrt{15}} \] ### Step 8: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ -\frac{(\sqrt{2}-\sqrt{5})(3-\sqrt{15})}{(3+\sqrt{15})(3-\sqrt{15})} \] ### Step 9: Simplify the denominator The denominator simplifies to: \[ 9 - 15 = -6 \] ### Step 10: Final expression Thus, the final expression becomes: \[ \frac{(\sqrt{2}-\sqrt{5})(3-\sqrt{15})}{6} \] ### Conclusion The simplified form of the original expression is: \[ \frac{\sqrt{2}-\sqrt{5}}{3+\sqrt{15}} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

[(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simplified form equals (a) 0 (b) (1)/(sqrt(2)) (c) 1 (c) sqrt(2)

(1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

(1)/(sqrt(2)+sqrt(3))-(2)/(sqrt(5)-sqrt(3))+(3)/(sqrt(5)-sqrt(2))=

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

(1)/(2sqrt(7)+sqrt(5))-(1)/(2sqrt(5)+sqrt(7)) simplify

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (3^(0)+3^(-1))/(3^(-1)-3^(0)) is simplified to

    Text Solution

    |

  2. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  3. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  4. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  5. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  6. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  7. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  8. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  9. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  10. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  11. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  12. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  13. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  14. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  15. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  16. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  17. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  18. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  19. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  20. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |