Home
Class 14
MATHS
[root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3...

`[root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)]` is equal to

A

`6^(5)`

B

`6^(5//6)`

C

`6`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([ \sqrt[3]{2} \times \sqrt{2} \times \sqrt[3]{3} \times \sqrt{3} ]\), we will break it down step by step. ### Step 1: Rewrite the roots in terms of exponents We can express the roots using fractional exponents: - \(\sqrt[3]{2} = 2^{1/3}\) - \(\sqrt{2} = 2^{1/2}\) - \(\sqrt[3]{3} = 3^{1/3}\) - \(\sqrt{3} = 3^{1/2}\) So, we rewrite the expression as: \[ 2^{1/3} \times 2^{1/2} \times 3^{1/3} \times 3^{1/2} \] ### Step 2: Combine the exponents for the same bases Using the property of exponents that states \(a^m \times a^n = a^{m+n}\), we can combine the terms for base 2 and base 3: - For base 2: \[ 2^{1/3} \times 2^{1/2} = 2^{1/3 + 1/2} \] To add the fractions, we need a common denominator. The least common multiple of 3 and 2 is 6: \[ 1/3 = 2/6 \quad \text{and} \quad 1/2 = 3/6 \] Thus, \[ 1/3 + 1/2 = 2/6 + 3/6 = 5/6 \] So, we have: \[ 2^{1/3} \times 2^{1/2} = 2^{5/6} \] - For base 3: \[ 3^{1/3} \times 3^{1/2} = 3^{1/3 + 1/2} = 3^{5/6} \] ### Step 3: Combine the results Now we can combine the results for both bases: \[ 2^{5/6} \times 3^{5/6} \] Using the property \(a^m \times b^m = (a \times b)^m\), we can factor this: \[ (2 \times 3)^{5/6} = 6^{5/6} \] ### Final Answer Thus, the expression \([ \sqrt[3]{2} \times \sqrt{2} \times \sqrt[3]{3} \times \sqrt{3} ]\) simplifies to: \[ 6^{5/6} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

The value of log_(2)(root(3)(2+sqrt(5))+root(3)(2-sqrt(5))) is equal to

root(5)(16)xxroot(5)(2) is equal t :-

root(3)(root(3)(a^(3))) is equal to

root(3)(x^(2))+root(3)(x^(2))=3

root(3)(2)+root(3)(16)-root(3)(54)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. Simplify 1/(sqrt(100)-sqrt(99))-1/(sqrt(99)-sqrt(98))+1/(sqrt(98)-sq...

    Text Solution

    |

  2. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  3. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  4. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  5. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  6. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  7. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  8. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  9. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  10. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  11. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  12. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  13. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  14. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  15. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  16. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  17. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  18. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  19. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  20. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |