Home
Class 14
MATHS
The value of (256)^(0.16)xx(256)^(0.09) ...

The value of `(256)^(0.16)xx(256)^(0.09)` is :

A

`256.25`

B

`64`

C

`16`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((256)^{0.16} \times (256)^{0.09}\), we can follow these steps: ### Step 1: Use the property of exponents According to the property of exponents, when multiplying two expressions with the same base, we can add the exponents. Therefore, we can rewrite the expression as: \[ (256)^{0.16 + 0.09} \] ### Step 2: Calculate the sum of the exponents Now, we need to add the exponents: \[ 0.16 + 0.09 = 0.25 \] So, we can rewrite the expression as: \[ (256)^{0.25} \] ### Step 3: Rewrite 256 in terms of a base Next, we can express 256 as a power of 16: \[ 256 = 16^{2} \] Thus, we can rewrite our expression: \[ (16^{2})^{0.25} \] ### Step 4: Apply the power of a power property Using the power of a power property \((a^{m})^{n} = a^{m \cdot n}\), we can simplify: \[ (16^{2})^{0.25} = 16^{2 \times 0.25} = 16^{0.5} \] ### Step 5: Rewrite 16 in terms of a base Next, we can express 16 as a power of 4: \[ 16 = 4^{2} \] So, we can rewrite our expression as: \[ (4^{2})^{0.5} \] ### Step 6: Apply the power of a power property again Using the power of a power property again: \[ (4^{2})^{0.5} = 4^{2 \times 0.5} = 4^{1} = 4 \] ### Final Answer Thus, the value of \((256)^{0.16} \times (256)^{0.09}\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Find the value of (256)^(0.16) xx (256)^(0.09)

What is the real value of (256)^(0.16)xx(16)^(0.18) ?

(256)^(0.16) xx (16)^(0.18) is equal to

Find value of (81)^(0.16)xx81^(0.09)

(625)^(0.16)times(625)^(0.09)=

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. [(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simpl...

    Text Solution

    |

  2. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  3. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  4. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  5. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  6. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  7. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  8. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  9. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  10. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  11. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  12. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  13. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  14. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  15. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  16. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  17. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  18. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  19. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  20. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |