Home
Class 14
MATHS
[8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^...

`[8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))]` is equal to

A

`32`

B

`8`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 8 - \left( \frac{4^{\frac{9}{4}} \sqrt{2} \cdot 2^{2}}{2 \sqrt{2^{-2}}} \right)^{\frac{1}{2}} \), we will simplify it step by step. ### Step 1: Simplify the components inside the parentheses First, we rewrite the expression inside the parentheses: \[ \frac{4^{\frac{9}{4}} \sqrt{2} \cdot 2^{2}}{2 \sqrt{2^{-2}}} \] We know that \( 4 = 2^2 \), so we can rewrite \( 4^{\frac{9}{4}} \) as: \[ (2^2)^{\frac{9}{4}} = 2^{2 \cdot \frac{9}{4}} = 2^{\frac{18}{4}} = 2^{\frac{9}{2}} \] Now, we can rewrite \( \sqrt{2} \) as \( 2^{\frac{1}{2}} \) and \( 2^{2} \) as \( 2^{2} \). So, the numerator becomes: \[ 2^{\frac{9}{2}} \cdot 2^{\frac{1}{2}} \cdot 2^{2} = 2^{\frac{9}{2} + \frac{1}{2} + 2} = 2^{\frac{9}{2} + \frac{1}{2} + \frac{4}{2}} = 2^{\frac{14}{2}} = 2^{7} \] ### Step 2: Simplify the denominator Now, we simplify the denominator: \[ 2 \sqrt{2^{-2}} = 2 \cdot 2^{-1} = 2^{1} \cdot 2^{-1} = 2^{0} = 1 \] ### Step 3: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{2^{7}}{1} = 2^{7} \] ### Step 4: Apply the square root Now we apply the square root to the entire expression: \[ \left( 2^{7} \right)^{\frac{1}{2}} = 2^{\frac{7}{2}} \] ### Step 5: Substitute back into the original expression Now we substitute this back into the original expression: \[ 8 - 2^{\frac{7}{2}} \] ### Step 6: Rewrite 8 in terms of powers of 2 We know that \( 8 = 2^{3} \), so we rewrite the expression: \[ 2^{3} - 2^{\frac{7}{2}} \] ### Step 7: Find a common base To combine these, we can express \( 2^{3} \) as \( 2^{\frac{6}{2}} \): \[ 2^{\frac{6}{2}} - 2^{\frac{7}{2}} = 2^{\frac{6}{2}} - 2^{\frac{7}{2}} = 2^{\frac{6}{2}}(1 - 2^{\frac{1}{2}}) \] ### Step 8: Simplify the expression This simplifies to: \[ 2^{\frac{6}{2}}(1 - \sqrt{2}) = 2^{3}(1 - \sqrt{2}) \] ### Final Result Thus, the final answer is: \[ 8(1 - \sqrt{2}) \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

[ 8- ((4^(9/4 ) sqrt(2.2 ^2))/( 2 sqrt( 2^(-2))))^(1/2) ] is equal to

sqrt(2)x^(2)+9x+4sqrt(2)

lim_(x rarr sqrt(2))(x^((5)/(2))-2^((5)/(4)))/(sqrt(x)-2^((1)/(4))) is equal to:

((2-sqrt(2))(2+sqrt(2)))/(4-2sqrt(2))

int(dx)/(sqrt(x^(2)-9)+sqrt(x^(2)-4))=

The sum sqrt((5)/(4)+sqrt((3)/(2)))+sqrt((5)/(4)-sqrt((3)/(2))) is equal to

int(1)/(sqrt(9x-4x^(2)))dx is equal to

2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. [root(3)(2)xxsqrt(2)xxroot(3)(3)xxsqrt(3)] is equal to

    Text Solution

    |

  2. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  3. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  4. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  5. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  6. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  7. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  8. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  9. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  10. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  11. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  12. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  13. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  14. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  15. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  16. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  17. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  18. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  19. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  20. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |