Home
Class 14
MATHS
(3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/...

`(3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6)+2)` is equal to

A

`3`

B

`2`

C

`0`

D

`sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3\sqrt{2})/(\sqrt{6}+\sqrt{3}) - (2\sqrt{6})/(\sqrt{3}+1) + (2\sqrt{3})/(\sqrt{6}+2)\), we will follow these steps: ### Step 1: Rationalize the first term The first term is \(\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}\). To rationalize it, we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{6}-\sqrt{3}\): \[ \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3})}{(\sqrt{6}+\sqrt{3})(\sqrt{6}-\sqrt{3})} \] Calculating the denominator: \[ (\sqrt{6})^2 - (\sqrt{3})^2 = 6 - 3 = 3 \] So, the first term becomes: \[ \frac{3\sqrt{2}(\sqrt{6}-\sqrt{3})}{3} = \sqrt{2}(\sqrt{6}-\sqrt{3}) = \sqrt{12} - \sqrt{6} \] ### Step 2: Rationalize the second term The second term is \(-\frac{2\sqrt{6}}{\sqrt{3}+1}\). We rationalize it by multiplying the numerator and denominator by the conjugate of the denominator, \(\sqrt{3}-1\): \[ -\frac{2\sqrt{6}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} \] Calculating the denominator: \[ (\sqrt{3})^2 - (1)^2 = 3 - 1 = 2 \] So, the second term becomes: \[ -\frac{2\sqrt{6}(\sqrt{3}-1)}{2} = -\sqrt{6}(\sqrt{3}-1) = -\sqrt{18} + \sqrt{6} \] ### Step 3: Rationalize the third term The third term is \(\frac{2\sqrt{3}}{\sqrt{6}+2}\). We rationalize it by multiplying the numerator and denominator by the conjugate of the denominator, \(\sqrt{6}-2\): \[ \frac{2\sqrt{3}(\sqrt{6}-2)}{(\sqrt{6}+2)(\sqrt{6}-2)} \] Calculating the denominator: \[ (\sqrt{6})^2 - (2)^2 = 6 - 4 = 2 \] So, the third term becomes: \[ \frac{2\sqrt{3}(\sqrt{6}-2)}{2} = \sqrt{3}(\sqrt{6}-2) = \sqrt{18} - 2\sqrt{3} \] ### Step 4: Combine all terms Now we combine all three terms: 1. From Step 1: \(\sqrt{12} - \sqrt{6}\) 2. From Step 2: \(-\sqrt{18} + \sqrt{6}\) 3. From Step 3: \(\sqrt{18} - 2\sqrt{3}\) Combining these: \[ (\sqrt{12} - \sqrt{6}) + (-\sqrt{18} + \sqrt{6}) + (\sqrt{18} - 2\sqrt{3}) \] Notice that \(-\sqrt{6} + \sqrt{6}\) cancels out: \[ \sqrt{12} - 2\sqrt{3} \] ### Step 5: Simplify the expression Now we simplify \(\sqrt{12}\): \[ \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \] So, we have: \[ 2\sqrt{3} - 2\sqrt{3} = 0 \] ### Final Answer The expression simplifies to \(0\).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(3+sqrt(6))/(sqrt(3)+sqrt(2))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

Simplify : (3sqrt(2))/(sqrt(6)-sqrt(3))-(4sqrt(3))/(sqrt(6)-sqrt(2))+(2sqrt(3))/(sqrt(6)+2)

If a=(4sqrt(6))/(sqrt(2)+sqrt(3))

(2)/(sqrt(5)+sqrt(3))-(3)/(sqrt(6)+sqrt(3))+(1)/(sqrt(6)+sqrt(5))=?

(2sqrt(6))/(sqrt(2)+sqrt(3)+sqrt(5)) equals

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The value of (256)^(0.16)xx(256)^(0.09) is :

    Text Solution

    |

  2. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  3. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  4. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  5. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  6. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  7. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  8. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  9. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  10. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  11. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  12. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  13. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  14. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  15. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  16. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  17. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  18. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  19. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  20. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |