Home
Class 14
MATHS
(4)^(0.5)xx(0.5)^(4) is equal to :...

`(4)^(0.5)xx(0.5)^(4)` is equal to :

A

A) `1`

B

B) `4`

C

C) `(1)/(8)`

D

D) `(1)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((4)^{0.5} \times (0.5)^{4}\), we can follow these steps: ### Step 1: Rewrite the bases in terms of powers of 2 We know that: \[ 4 = 2^2 \quad \text{and} \quad 0.5 = \frac{1}{2} = 2^{-1} \] So we can rewrite the expression as: \[ (2^2)^{0.5} \times (2^{-1})^{4} \] ### Step 2: Apply the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify each term: \[ (2^2)^{0.5} = 2^{2 \cdot 0.5} = 2^{1} = 2 \] \[ (2^{-1})^{4} = 2^{-1 \cdot 4} = 2^{-4} \] ### Step 3: Combine the powers of 2 Now we can combine the two results: \[ 2 \times 2^{-4} = 2^{1} \times 2^{-4} = 2^{1 - 4} = 2^{-3} \] ### Step 4: Convert the result back to a fraction The expression \(2^{-3}\) can be rewritten as: \[ 2^{-3} = \frac{1}{2^{3}} = \frac{1}{8} \] ### Final Answer Thus, the value of \((4)^{0.5} \times (0.5)^{4}\) is: \[ \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

((0.6)^(4)-(0.5)^(4))/((0.6)^(2)+(0.5)^(2)) is equal to (a) 0.1(b)0.11(0.6)^(2)+(0.5)^(2) (c) 1.1 (d) 11

(5/7)^4 xx (7/5)^2 is equal to

(0.2xx0.2+0.01)(0.1xx0.1+0.02)^(-1) is equal to (5)/(3)(b)(9)/(5)(c)(41)/(4) (d) (41)/(12)

When simplified,the expression (100)^(1/2) xx (0.001)^(1/3)-(0.0016)^(1/4) xx 3^0 + (5/4)^(-1) is equal to :

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. [8-((4^((9)/(4))sqrt(2.2^(2)))/(2sqrt(2^(-2))))^((1)/(2))] is equal to

    Text Solution

    |

  2. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  3. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  4. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  5. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  6. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  7. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  8. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  9. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  10. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  11. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  12. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  13. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  14. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  15. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  16. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  17. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  18. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  19. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  20. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |