Home
Class 14
MATHS
If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))...

If `a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))` and `b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))` , then the value of `(a^(2))/(b)+(b^(2))/(a)` is :

A

A) `1030`

B

B) `1025`

C

C) `970`

D

D) `930`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{a^2}{b} + \frac{b^2}{a}\) given: \[ a = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] \[ b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] ### Step 1: Calculate \(a + b\) First, we find \(a + b\): \[ a + b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} + \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] To add these fractions, we need a common denominator: \[ = \frac{(\sqrt{3} - \sqrt{2})^2 + (\sqrt{3} + \sqrt{2})^2}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6} \] \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] Adding these gives: \[ (5 - 2\sqrt{6}) + (5 + 2\sqrt{6}) = 10 \] Now for the denominator: \[ (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1 \] Thus, we have: \[ a + b = \frac{10}{1} = 10 \] ### Step 2: Calculate \(ab\) Next, we calculate \(ab\): \[ ab = \left(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\right) \left(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\right) = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \] This simplifies to: \[ ab = \frac{3 - 2}{1} = 1 \] ### Step 3: Calculate \(\frac{a^2}{b} + \frac{b^2}{a}\) Using the identity: \[ \frac{a^2}{b} + \frac{b^2}{a} = \frac{a^3 + b^3}{ab} \] We know: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] We can express \(a^2 + b^2\) as: \[ a^2 + b^2 = (a + b)^2 - 2ab = 10^2 - 2 \cdot 1 = 100 - 2 = 98 \] Thus: \[ a^3 + b^3 = (a + b)((a^2 + b^2) - ab) = 10(98 - 1) = 10 \cdot 97 = 970 \] Finally, substituting back into the equation: \[ \frac{a^2}{b} + \frac{b^2}{a} = \frac{970}{1} = 970 \] ### Final Answer The value of \(\frac{a^2}{b} + \frac{b^2}{a}\) is: \[ \boxed{970} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)

if a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)),b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) , then value of a^(2) + b^(2) is

a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of (1)/(a^(2))+(1)/(b^(2))

If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) then value of sqrt(3a^2 - 5ab + 3b^2) is

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then find a^(2)+b^(2)-5ab

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (3sqrt(2))/(sqrt(6)+sqrt(3))-(2sqrt(6))/(sqrt(3)+1)+(2sqrt(3))/(sqrt(6...

    Text Solution

    |

  2. (4)^(0.5)xx(0.5)^(4) is equal to :

    Text Solution

    |

  3. If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  4. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  5. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  6. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  7. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  8. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  9. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  10. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  11. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  12. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  13. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  14. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  15. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  16. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  17. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  18. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  19. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |

  20. 2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5) is equal to

    Text Solution

    |