Home
Class 14
MATHS
Simplified form of [(root(5)(x^(-3//5)))...

Simplified form of `[(root(5)(x^(-3//5)))^(-5//3)]^(5)` is

A

`x^(5)`

B

`x^(-5)`

C

`x`

D

`(1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left[\sqrt[5]{x^{-\frac{3}{5}}}\right]^{-\frac{5}{3}}^5\), we will follow these steps: ### Step 1: Rewrite the expression The expression can be rewritten using exponent rules: \[ \left[\sqrt[5]{x^{-\frac{3}{5}}}\right]^{-\frac{5}{3}} = \left[x^{-\frac{3}{5}}^{\frac{1}{5}}\right]^{-\frac{5}{3}} \] This means we can express the 5th root as an exponent of \(\frac{1}{5}\). ### Step 2: Simplify the exponent Now, we simplify the exponent: \[ x^{-\frac{3}{5} \cdot \frac{1}{5}} = x^{-\frac{3}{25}} \] Thus, we have: \[ \left[x^{-\frac{3}{25}}\right]^{-\frac{5}{3}} \] ### Step 3: Apply the exponent rule Using the power of a power rule \((a^m)^n = a^{m \cdot n}\), we simplify further: \[ x^{-\frac{3}{25} \cdot -\frac{5}{3}} = x^{\frac{3 \cdot 5}{25 \cdot 3}} = x^{\frac{15}{75}} = x^{\frac{1}{5}} \] ### Step 4: Raise to the power of 5 Now we raise this result to the power of 5: \[ \left[x^{\frac{1}{5}}\right]^5 = x^{\frac{1}{5} \cdot 5} = x^1 = x \] ### Final Result Thus, the simplified form of the original expression is: \[ \boxed{x} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify the following: (5i)(-(3)/(5)i)

Simplify [([-5(sqrt(125))^(-2)]]^(-(5)/(3))

Simplify: ((-5x^(3))/(2y^(-4)))^(-3)

Simplify root(5)(x^(4)root(4)(x^(3)root(3)(x^(2)sqrt(x))))

Simplify (1024)^(-3//5) .

Simplify : ((13)/(5)x(8)/(3))-((-5)/(2)x(11)/(3))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The value of sqrt(40+sqrt(9sqrt(81))) is

    Text Solution

    |

  2. (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(...

    Text Solution

    |

  3. Simplified form of [(root(5)(x^(-3//5)))^(-5//3)]^(5) is

    Text Solution

    |

  4. If 1^(3)+2^(3)+…. + 10^(3)=3025, then the value of 2^(3)+4^(3)+…. + 20...

    Text Solution

    |

  5. (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    Text Solution

    |

  6. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  7. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  8. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  9. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  10. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  11. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  12. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  13. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  14. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  15. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  16. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |

  17. 2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5) is equal to

    Text Solution

    |

  18. The value of (1-sqrt(2))+(sqrt(2)+sqrt(3))-(sqrt(3)-sqrt(4))-...+(sqrt...

    Text Solution

    |

  19. (0.3555xx0.5555xx2.025)/(0.225xx1.7775xx0.2222) is equal to

    Text Solution

    |

  20. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |