Home
Class 14
MATHS
{(-2)^((-2))}^((-2)) is equal to :...

`{(-2)^((-2))}^((-2))` is equal to :

A

a) `16`

B

b) `8`

C

c) `-8`

D

d) `-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \({(-2)}^{(-2)^{(-2)}}\), we will follow the laws of exponents step by step. ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ {(-2)}^{(-2)^{(-2)}} \] 2. **Apply the Law of Exponents**: According to the law of exponents, when we have a power raised to another power, we multiply the exponents: \[ a^{m^n} = a^{m \cdot n} \] Here, we can rewrite our expression as: \[ {(-2)}^{(-2)^{(-2)}} = {(-2)}^{(-2) \cdot (-2)} \] 3. **Calculate the Exponent**: Now, we calculate the exponent: \[ (-2) \cdot (-2) = 4 \] So, we can rewrite the expression as: \[ {(-2)}^{4} \] 4. **Evaluate the Power**: Now we need to evaluate \({(-2)}^{4}\): \[ {(-2)}^{4} = (-2) \cdot (-2) \cdot (-2) \cdot (-2) \] We can calculate this step by step: - First, \((-2) \cdot (-2) = 4\) - Next, \(4 \cdot (-2) = -8\) - Finally, \(-8 \cdot (-2) = 16\) Thus, \({(-2)}^{4} = 16\). 5. **Final Result**: Therefore, the value of the original expression \({(-2)}^{(-2)^{(-2)}}\) is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(-2)^(-3)xx(-2)^(-2) is equal to

(-2)^(-3)xx(-2)^(-2) is equal to

The number of values of x satisfying 3^((log_(3)x)^(2))=2^((log_(2)x)^(2)) is equal to

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

(2^3+2^2+2^(-2)+2^(-3)) is equal to

The value of lim_(xrarroo)((lnx)^(2))/(2+3x^(2)) is equal to

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. ((1+sqrt(2))/(sqrt(5)+sqrt(3))+(1-sqrt(2))/(sqrt(5)-sqrt(3))) simplifi...

    Text Solution

    |

  2. When simplified equal to (256)^(-(4^(-(3)/(2)))) is

    Text Solution

    |

  3. {(-2)^((-2))}^((-2)) is equal to :

    Text Solution

    |

  4. (sqrt(2)+sqrt(7-2sqrt(10))) is equal to

    Text Solution

    |

  5. (256)^(0.16)xx(4)^(0.36) is equal to

    Text Solution

    |

  6. By how much does 5sqrt(7)-2sqrt(5) exceed 3sqrt(7)-4sqrt(5) ?

    Text Solution

    |

  7. (sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))+(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5)...

    Text Solution

    |

  8. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  9. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  10. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  11. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |

  12. 2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5) is equal to

    Text Solution

    |

  13. The value of (1-sqrt(2))+(sqrt(2)+sqrt(3))-(sqrt(3)-sqrt(4))-...+(sqrt...

    Text Solution

    |

  14. (0.3555xx0.5555xx2.025)/(0.225xx1.7775xx0.2222) is equal to

    Text Solution

    |

  15. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  16. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  17. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  18. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  19. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  20. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |