Home
Class 14
MATHS
The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3...

The value of `(1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3))+...+(1)/(sqrt(100)+sqrt(99))` is

A

`1`

B

`9`

C

`sqrt(99)`

D

`sqrt(99)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ S = \frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \ldots + \frac{1}{\sqrt{100}+\sqrt{99}}, \] we will rationalize each term in the sum. ### Step 1: Rationalize the first term The first term is \[ \frac{1}{\sqrt{2}+1}. \] To rationalize it, we multiply the numerator and the denominator by \(\sqrt{2}-1\): \[ \frac{1}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{(\sqrt{2})^2 - 1^2} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1. \] ### Step 2: Rationalize the second term The second term is \[ \frac{1}{\sqrt{3}+\sqrt{2}}. \] Rationalizing it by multiplying by \(\sqrt{3}-\sqrt{2}\): \[ \frac{1}{\sqrt{3}+\sqrt{2}} \cdot \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3}-\sqrt{2}}{3-2} = \sqrt{3}-\sqrt{2}. \] ### Step 3: Rationalize the third term The third term is \[ \frac{1}{\sqrt{4}+\sqrt{3}}. \] Rationalizing it: \[ \frac{1}{\sqrt{4}+\sqrt{3}} \cdot \frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}} = \frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4})^2 - (\sqrt{3})^2} = \frac{2-\sqrt{3}}{4-3} = 2-\sqrt{3}. \] ### Step 4: General term Continuing this process, we can see that the \(n\)-th term can be expressed as: \[ \frac{1}{\sqrt{n}+\sqrt{n-1}} = \sqrt{n} - \sqrt{n-1}. \] ### Step 5: Write the entire sum So, the entire sum \(S\) can be rewritten as: \[ S = (\sqrt{2}-1) + (\sqrt{3}-\sqrt{2}) + (\sqrt{4}-\sqrt{3}) + \ldots + (\sqrt{100}-\sqrt{99}). \] ### Step 6: Simplify the sum Notice that this is a telescoping series. Most terms will cancel out: \[ S = -1 + \sqrt{100} = -1 + 10 = 9. \] ### Final Answer Thus, the value of the expression is \[ \boxed{9}. \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

The sum of 1/(sqrt(2)+1) + 1/(sqrt(3) + sqrt(2)) + 1/(sqrt(4) + sqrt(3)) +.....1/(sqrt(100) + sqrt(99)) is equal to:

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

the value of 3(1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3))+.........+(1)/(sqrt(16)+sqrt(15)) is

The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+........+(1)/(sqrt(8) + sqrt(9)) is

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+...(1)/(sqrt(99)+sqrt(100))

Determine the value of (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+1+(1)/(sqrt(120)+sqrt(121)) (a) 8 (b) 10 (c) sqrt(120) (d) 12sqrt(2)

Prove that (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+....+(1)/(sqrt(8)+sqrt(9))=2

(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. ((2)/(sqrt(6)+2)+(1)/(sqrt(7)+sqrt(6))+(1)/(sqrt(8)-sqrt(7))+2-2sqrt(2...

    Text Solution

    |

  2. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  3. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  4. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |

  5. 2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5) is equal to

    Text Solution

    |

  6. The value of (1-sqrt(2))+(sqrt(2)+sqrt(3))-(sqrt(3)-sqrt(4))-...+(sqrt...

    Text Solution

    |

  7. (0.3555xx0.5555xx2.025)/(0.225xx1.7775xx0.2222) is equal to

    Text Solution

    |

  8. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  9. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  10. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  11. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  12. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  13. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  14. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  15. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  16. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  17. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  18. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  19. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  20. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |