Home
Class 14
MATHS
[{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to...

`[{(-(1)/(2))^(2)}^(-2)]^(-1)` is equal to :

A

a) `(1)/(16)`

B

b) `16`

C

c) `-(1)/(16)`

D

d) `-16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([ \{ (-\frac{1}{2})^2 \} ^{-2} ]^{-1}\), we will follow the order of operations and the laws of exponents step by step. ### Step 1: Simplify the innermost expression First, we simplify \((- \frac{1}{2})^2\): \[ (-\frac{1}{2})^2 = \frac{1}{4} \] ### Step 2: Apply the next exponent Now we substitute this back into the expression: \[ \{ \frac{1}{4} \} ^{-2} \] Using the property of exponents, \(a^{-n} = \frac{1}{a^n}\), we can rewrite this as: \[ \frac{1}{(\frac{1}{4})^2} \] ### Step 3: Calculate \((\frac{1}{4})^2\) Now we calculate \((\frac{1}{4})^2\): \[ (\frac{1}{4})^2 = \frac{1}{16} \] ### Step 4: Substitute back into the expression Now we substitute this back into our expression: \[ \frac{1}{\frac{1}{16}} = 16 \] ### Step 5: Apply the final exponent Now we take the final exponent: \[ 16^{-1} = \frac{1}{16} \] ### Final Answer Thus, the expression \([ \{ (-\frac{1}{2})^2 \} ^{-2} ]^{-1}\) simplifies to: \[ \frac{1}{16} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

2 tan^(-1) (-2) is equal to

Sin^(–1)(1/2) is equal to

If A=[[-1,(3)/(2)],[-(1)/(2),(1)/(2)]] then A^(2) is equal to

(a^(-1)-b^(-1))/(a^(-2)-b^(-2)) is equal to:

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. By how much does (sqrt(12)+sqrt(18)) exceed (2sqrt(3)+2sqrt(2)) ?

    Text Solution

    |

  2. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  3. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |

  4. 2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5) is equal to

    Text Solution

    |

  5. The value of (1-sqrt(2))+(sqrt(2)+sqrt(3))-(sqrt(3)-sqrt(4))-...+(sqrt...

    Text Solution

    |

  6. (0.3555xx0.5555xx2.025)/(0.225xx1.7775xx0.2222) is equal to

    Text Solution

    |

  7. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  8. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  9. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  10. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  11. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  12. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  13. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  14. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  15. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  16. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  17. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  18. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  19. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  20. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |