Home
Class 14
MATHS
2root(3)(40)-4root(3)(320)+3root(3)(625)...

`2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5)` is equal to

A

a) `-2root3(340)`

B

b) `0`

C

c) `root3(340)`

D

d) `root3(660)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2\sqrt[3]{40} - 4\sqrt[3]{320} + 3\sqrt[3]{625} - 3\sqrt[3]{5} \), we will break down each term step by step. ### Step 1: Break down the cube roots First, we will simplify each cube root term in the expression. 1. **For \( \sqrt[3]{40} \)**: \[ 40 = 8 \times 5 \quad \text{(since \( 8 = 2^3 \))} \] Therefore, \[ \sqrt[3]{40} = \sqrt[3]{8 \times 5} = \sqrt[3]{8} \times \sqrt[3]{5} = 2\sqrt[3]{5} \] 2. **For \( \sqrt[3]{320} \)**: \[ 320 = 64 \times 5 = 8 \times 40 = 8 \times 8 \times 5 \] Therefore, \[ \sqrt[3]{320} = \sqrt[3]{64 \times 5} = \sqrt[3]{64} \times \sqrt[3]{5} = 4\sqrt[3]{5} \] 3. **For \( \sqrt[3]{625} \)**: \[ 625 = 125 \times 5 = 5^3 \times 5 = 5^4 \] Therefore, \[ \sqrt[3]{625} = \sqrt[3]{5^4} = 5^{4/3} = 5 \cdot \sqrt[3]{5} \] 4. **For \( \sqrt[3]{5} \)**: This term remains as it is. ### Step 2: Substitute back into the expression Now we substitute these simplified terms back into the original expression: \[ 2\sqrt[3]{40} - 4\sqrt[3]{320} + 3\sqrt[3]{625} - 3\sqrt[3]{5} \] becomes: \[ 2(2\sqrt[3]{5}) - 4(4\sqrt[3]{5}) + 3(5\sqrt[3]{5}) - 3\sqrt[3]{5} \] which simplifies to: \[ 4\sqrt[3]{5} - 16\sqrt[3]{5} + 15\sqrt[3]{5} - 3\sqrt[3]{5} \] ### Step 3: Combine like terms Now we combine the coefficients of \( \sqrt[3]{5} \): \[ (4 - 16 + 15 - 3)\sqrt[3]{5} = (4 - 16 + 15 - 3)\sqrt[3]{5} = 0\sqrt[3]{5} \] ### Final Result Thus, the entire expression simplifies to: \[ 0 \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

root(3)(135)-:root(3)(5)

root(3)(2)+root(3)(16)-root(3)(54)

root(3)(root(3)(a^(3))) is equal to

root(3)(1331)xx root(3)(216)+root(3)(729)+root(3)(64) is equal to

root(3)(4)times root(3)(16)

root (3)(1331) xx root (3) (216) + root (3) (64) is equal to

root(3)(2) . root(4)(2) . root(12)(32)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The value of (1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3...

    Text Solution

    |

  2. [{(-(1)/(2))^(2)}^(-2)]^(-1) is equal to :

    Text Solution

    |

  3. 2root(3)(40)-4root(3)(320)+3root(3)(625)-3root(3)(5) is equal to

    Text Solution

    |

  4. The value of (1-sqrt(2))+(sqrt(2)+sqrt(3))-(sqrt(3)-sqrt(4))-...+(sqrt...

    Text Solution

    |

  5. (0.3555xx0.5555xx2.025)/(0.225xx1.7775xx0.2222) is equal to

    Text Solution

    |

  6. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  7. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  8. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  9. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  10. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  11. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  12. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  13. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  14. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  15. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  16. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  17. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  18. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  19. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  20. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |