Home
Class 14
MATHS
Simplify : (0.05xx0.05xx0.05-0.04xx0.04x...

Simplify : `(0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04xx0.04)`

A

`1`

B

`0.1`

C

`0.01`

D

`0.001`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((0.05 \times 0.05 \times 0.05 - 0.04 \times 0.04 \times 0.04) / (0.05 \times 0.05 + 0.002 + 0.04 \times 0.04)\), we can follow these steps: ### Step 1: Rewrite the expression using exponents We can express the terms in the numerator and denominator using exponents: - \(0.05 \times 0.05 \times 0.05 = (0.05)^3\) - \(0.04 \times 0.04 \times 0.04 = (0.04)^3\) So, the numerator becomes: \[ (0.05)^3 - (0.04)^3 \] ### Step 2: Recognize the difference of cubes The expression \((a^3 - b^3)\) can be factored using the difference of cubes formula: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Let \(a = 0.05\) and \(b = 0.04\). Therefore, we can rewrite the numerator as: \[ (0.05 - 0.04)((0.05)^2 + (0.05)(0.04) + (0.04)^2) \] ### Step 3: Calculate \(0.05 - 0.04\) Calculating the difference: \[ 0.05 - 0.04 = 0.01 \] ### Step 4: Calculate the remaining terms in the numerator Now we calculate \((0.05)^2 + (0.05)(0.04) + (0.04)^2\): - \((0.05)^2 = 0.0025\) - \((0.05)(0.04) = 0.002\) - \((0.04)^2 = 0.0016\) Adding these together: \[ 0.0025 + 0.002 + 0.0016 = 0.0061 \] ### Step 5: Substitute back into the numerator Now substituting back into the numerator: \[ 0.01 \times 0.0061 = 0.000061 \] ### Step 6: Calculate the denominator Now we calculate the denominator: \[ (0.05 \times 0.05) + 0.002 + (0.04 \times 0.04) \] Calculating each term: - \(0.05 \times 0.05 = 0.0025\) - \(0.04 \times 0.04 = 0.0016\) Adding these: \[ 0.0025 + 0.002 + 0.0016 = 0.0061 \] ### Step 7: Final division Now we divide the numerator by the denominator: \[ \frac{0.000061}{0.0061} \] ### Step 8: Simplify the fraction This simplifies to: \[ \frac{0.000061}{0.0061} = 0.01 \] Thus, the final simplified result is: \[ \boxed{0.01} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(0.7xx0.05xx0.004)/(0.07xx0.04)=

(0.06xx0.06xx0.06-0.05xx0.05xx0.05)/(0.06xx0.06+0.06xx0.05+0.05xx0.05) gives

The simplification of (0.06xx0.06xx0.06-0.05xx0.05xx0.05)/(0.06xx0.06+0.06xx0.05+0.05xx0.05) gives:

(1.04xx1.04+1.04xx0.04+0.04xx0.04)/(1.04xx1.04xx1.04-0.04xx0.04xx0.04)=

The value of ((0.1xx0.1xx0.1+0.04xx0.04xx0.02)/(0.2xx0.2xx0.2+0.04xx0.04xx0.04)) is (a) 0.0125(b)0.125(c)0.25 (d) 0.5

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (0.3555xx0.5555xx2.025)/(0.225xx1.7775xx0.2222) is equal to

    Text Solution

    |

  2. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  3. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  4. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  5. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  6. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  7. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  8. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  9. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  10. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  11. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  12. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  13. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  14. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  15. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  16. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  17. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  18. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  19. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  20. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |