Home
Class 14
MATHS
If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sq...

If `((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1` then the value of `x` is

A

`sqrt(5)`

B

`5`

C

`2sqrt(5)`

D

`3sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(x - \sqrt{24})(\sqrt{75} + \sqrt{50})}{\sqrt{75} - \sqrt{50}} = 1, \] we will follow these steps: ### Step 1: Simplify the square roots First, we simplify the square roots involved in the equation. \[ \sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}, \] \[ \sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3}, \] \[ \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}. \] ### Step 2: Substitute the simplified values Now we substitute these values back into the equation: \[ \frac{(x - 2\sqrt{6})(5\sqrt{3} + 5\sqrt{2})}{5\sqrt{3} - 5\sqrt{2}} = 1. \] ### Step 3: Factor out common terms We can factor out 5 from both the numerator and denominator: \[ \frac{(x - 2\sqrt{6})(\sqrt{3} + \sqrt{2})}{\sqrt{3} - \sqrt{2}} = 1. \] ### Step 4: Rationalize the denominator To eliminate the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(x - 2\sqrt{6})(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} = \frac{(x - 2\sqrt{6})(\sqrt{3} + \sqrt{2})^2}{1}. \] ### Step 5: Expand the numerator Now, we expand the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6}. \] So, we have: \[ (x - 2\sqrt{6})(5 + 2\sqrt{6}) = 1. \] ### Step 6: Distribute in the equation Distributing gives us: \[ 5x + 2\sqrt{6}x - 10\sqrt{6} - 12 = 1. \] ### Step 7: Rearrange the equation Rearranging the equation leads to: \[ 5x + 2\sqrt{6}x - 10\sqrt{6} - 12 - 1 = 0, \] which simplifies to: \[ 5x + 2\sqrt{6}x - 10\sqrt{6} - 13 = 0. \] ### Step 8: Collect like terms We can collect the terms involving \(x\): \[ (5 + 2\sqrt{6})x = 10\sqrt{6} + 13. \] ### Step 9: Solve for \(x\) Now, we solve for \(x\): \[ x = \frac{10\sqrt{6} + 13}{5 + 2\sqrt{6}}. \] ### Step 10: Rationalize the denominator again To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(10\sqrt{6} + 13)(5 - 2\sqrt{6})}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})}. \] Calculating the denominator: \[ (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 25 - 24 = 1. \] Thus, we have: \[ x = 10\sqrt{6} \cdot 5 - 20 \cdot 6 + 13 \cdot 5 - 26\sqrt{6} = 50\sqrt{6} - 120 + 65 - 26\sqrt{6} = (50\sqrt{6} - 26\sqrt{6}) + (65 - 120) = 24\sqrt{6} - 55. \] ### Final Result After simplifying, we find: \[ x = 5. \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If (110sqrt(25))/(sqrt(25)+x)=50, then the value of x is

If (100 sqrt(25))/(sqrt(25) + x) = 50 then the value of x is :

If sqrt(x)+sqrt(x-sqrt(1-x))=1 then value of x is

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

sqrt(5){(sqrt(5)+1)^(50)-(sqrt(5)-1)^(50)}

If sqrt(x)+sqrt(y)=17 and sqrt(x)-sqrt(y)=1, then the value of is sqrt(xy)

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))

4sqrt(3)-7sqrt(12)+2sqrt(75)=

sqrt(x)-sqrt(1-x)=(1)/(5) and sqrt(x)+sqrt(1-x)=(7a)/(5) then the value of a is :

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  2. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  3. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  4. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  5. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  6. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  7. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  8. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  9. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  10. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  11. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  12. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  13. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  14. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  15. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  16. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  17. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  18. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  19. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  20. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |