Home
Class 14
MATHS
Evaluate sqrt(20)+sqrt(12)+root(3)(729)-...

Evaluate `sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)`

A

`sqrt(2)`

B

`sqrt(3)`

C

`0`

D

`2sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sqrt{20} + \sqrt{12} + \sqrt[3]{729} - \frac{4}{\sqrt{5} - \sqrt{3}} - \sqrt{81} \), we will break it down step by step. ### Step 1: Simplify \( \sqrt{20} \) \[ \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5} \] **Hint:** Factor the number under the square root into perfect squares to simplify. ### Step 2: Simplify \( \sqrt{12} \) \[ \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3} \] **Hint:** Look for pairs of factors that are perfect squares. ### Step 3: Simplify \( \sqrt[3]{729} \) \[ \sqrt[3]{729} = 9 \quad \text{(since } 9 \times 9 \times 9 = 729\text{)} \] **Hint:** Recognize that \( 729 \) is a power of \( 9 \) (specifically, \( 9^3 \)). ### Step 4: Simplify \( \sqrt{81} \) \[ \sqrt{81} = 9 \] **Hint:** Identify perfect squares directly. ### Step 5: Substitute the simplified values into the expression Now substituting the simplified values back into the expression: \[ 2\sqrt{5} + 2\sqrt{3} + 9 - \frac{4}{\sqrt{5} - \sqrt{3}} - 9 \] ### Step 6: Combine like terms The \( 9 \) and \( -9 \) cancel out: \[ 2\sqrt{5} + 2\sqrt{3} - \frac{4}{\sqrt{5} - \sqrt{3}} \] ### Step 7: Rationalize the denominator of \( \frac{4}{\sqrt{5} - \sqrt{3}} \) Multiply the numerator and denominator by \( \sqrt{5} + \sqrt{3} \): \[ \frac{4(\sqrt{5} + \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})} = \frac{4(\sqrt{5} + \sqrt{3})}{5 - 3} = \frac{4(\sqrt{5} + \sqrt{3})}{2} = 2(\sqrt{5} + \sqrt{3}) \] **Hint:** To rationalize, multiply by the conjugate of the denominator. ### Step 8: Substitute back into the expression Now we have: \[ 2\sqrt{5} + 2\sqrt{3} - 2(\sqrt{5} + \sqrt{3}) \] ### Step 9: Combine like terms again \[ 2\sqrt{5} + 2\sqrt{3} - 2\sqrt{5} - 2\sqrt{3} = 0 \] ### Final Result The final result of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(45)-3sqrt(20)+4sqrt(5)

(sqrt(81)+sqrt(729))/(sqrt(225)-sqrt(9))=

Evaluate (sqrt(5)-sqrt(3))/(sqrt(5)-sqrt(3))

Evaluate (4+sqrt(5))(sqrt(3)-sqrt(7))

Evaluate : (sqrt(7)+sqrt(5))/(sqrt(7)+sqrt(20)+sqrt(28)-sqrt(5)-sqrt(80))

sqrt(3)sqrt(4)sqrt(12)=

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

Evaluate : ( sqrt(5) + sqrt(3) )/ ( sqrt(5) - sqrt(3))

Evaluate : ( sqrt(2) - sqrt(3) + sqrt(5) )times ( sqrt(2) + sqrt(3) + sqrt(5) )

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. Simplify : (0.05xx0.05xx0.05-0.04xx0.04xx0.04)/(0.05xx0.05+0.002+0.04x...

    Text Solution

    |

  2. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  3. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  4. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  5. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  6. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  7. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  8. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  9. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  10. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  11. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  12. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  13. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  14. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  15. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  16. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  17. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  18. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  19. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  20. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |