Home
Class 14
MATHS
Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1...

Let `a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15))` Then we have .

A

`alt18"but"a ne 9`

B

`agt18`

C

`a=18`

D

`a=9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( a = \frac{1}{2 - \sqrt{3}} + \frac{1}{3 - \sqrt{8}} + \frac{1}{4 - \sqrt{15}} \), we will rationalize each term in the sum. ### Step 1: Rationalize the first term \( \frac{1}{2 - \sqrt{3}} \) To rationalize, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( 2 + \sqrt{3} \): \[ \frac{1}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} \] Now, simplify the denominator using the difference of squares: \[ (2 - \sqrt{3})(2 + \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Thus, the first term simplifies to: \[ \frac{2 + \sqrt{3}}{1} = 2 + \sqrt{3} \] ### Step 2: Rationalize the second term \( \frac{1}{3 - \sqrt{8}} \) Again, we multiply the numerator and the denominator by the conjugate of the denominator, \( 3 + \sqrt{8} \): \[ \frac{1}{3 - \sqrt{8}} \cdot \frac{3 + \sqrt{8}}{3 + \sqrt{8}} = \frac{3 + \sqrt{8}}{(3 - \sqrt{8})(3 + \sqrt{8})} \] Now, simplify the denominator: \[ (3 - \sqrt{8})(3 + \sqrt{8}) = 3^2 - (\sqrt{8})^2 = 9 - 8 = 1 \] Thus, the second term simplifies to: \[ \frac{3 + \sqrt{8}}{1} = 3 + \sqrt{8} \] ### Step 3: Rationalize the third term \( \frac{1}{4 - \sqrt{15}} \) We multiply the numerator and the denominator by the conjugate of the denominator, \( 4 + \sqrt{15} \): \[ \frac{1}{4 - \sqrt{15}} \cdot \frac{4 + \sqrt{15}}{4 + \sqrt{15}} = \frac{4 + \sqrt{15}}{(4 - \sqrt{15})(4 + \sqrt{15})} \] Now, simplify the denominator: \[ (4 - \sqrt{15})(4 + \sqrt{15}) = 4^2 - (\sqrt{15})^2 = 16 - 15 = 1 \] Thus, the third term simplifies to: \[ \frac{4 + \sqrt{15}}{1} = 4 + \sqrt{15} \] ### Step 4: Combine all terms Now we combine all three simplified terms: \[ a = (2 + \sqrt{3}) + (3 + \sqrt{8}) + (4 + \sqrt{15}) \] Combine the constant terms and the square root terms: \[ a = (2 + 3 + 4) + (\sqrt{3} + \sqrt{8} + \sqrt{15}) = 9 + \sqrt{3} + \sqrt{8} + \sqrt{15} \] ### Final Result Thus, the final expression for \( a \) is: \[ a = 9 + \sqrt{3} + \sqrt{8} + \sqrt{15} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(3)/(sqrt(8))+(1)/(sqrt(2))

(1/(3-sqrt(8))-1/(sqrt(8)-sqrt(7)))

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Solve: (1)/(sqrt(3)-8)-(1)/(sqrt(8)-sqrt(7))

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

Rationalize the denominator (1)/(sqrt(3)-sqrt(2)), (1)/(3sqrt(2)) ,(3)/(sqrt(8))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(8))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. If ((x-sqrt(24))(sqrt(75)+sqrt(50)))/(sqrt(75)-sqrt(50))=1 then the va...

    Text Solution

    |

  2. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  3. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  4. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  5. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  6. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  7. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  8. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  9. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  10. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  11. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  12. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  13. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  14. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  15. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  16. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  17. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  18. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  19. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  20. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |