Home
Class 14
MATHS
If a,b are rationals and asqrt(2)+bsqrt(...

If a,b are rationals and `asqrt(2)+bsqrt(3)`
`=sqrt(98)+sqrt(108)-sqrt(48)-sqrt(72)` then the values of a,b are respectively

A

a) `1,2`

B

b) `1,3`

C

c) `2,1`

D

d) `2,3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a\sqrt{2} + b\sqrt{3} = \sqrt{98} + \sqrt{108} - \sqrt{48} - \sqrt{72} \), we will simplify the right-hand side step by step and compare coefficients to find the values of \( a \) and \( b \). ### Step 1: Simplify \( \sqrt{98} \) \[ \sqrt{98} = \sqrt{2 \times 49} = \sqrt{2} \times \sqrt{49} = 7\sqrt{2} \] **Hint:** Factor the number under the square root to find perfect squares. ### Step 2: Simplify \( \sqrt{108} \) \[ \sqrt{108} = \sqrt{36 \times 3} = \sqrt{36} \times \sqrt{3} = 6\sqrt{3} \] **Hint:** Look for the largest perfect square that divides the number. ### Step 3: Simplify \( \sqrt{48} \) \[ \sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3} \] **Hint:** Again, factor to find perfect squares. ### Step 4: Simplify \( \sqrt{72} \) \[ \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2} \] **Hint:** Use the same method of factoring for simplification. ### Step 5: Combine the simplified terms Now substituting back into the equation: \[ \sqrt{98} + \sqrt{108} - \sqrt{48} - \sqrt{72} = 7\sqrt{2} + 6\sqrt{3} - 4\sqrt{3} - 6\sqrt{2} \] Combine like terms: \[ = (7\sqrt{2} - 6\sqrt{2}) + (6\sqrt{3} - 4\sqrt{3}) = 1\sqrt{2} + 2\sqrt{3} \] ### Step 6: Set up the equation Now we have: \[ a\sqrt{2} + b\sqrt{3} = 1\sqrt{2} + 2\sqrt{3} \] ### Step 7: Compare coefficients From the equation, we can compare coefficients: - For \( \sqrt{2} \): \( a = 1 \) - For \( \sqrt{3} \): \( b = 2 \) ### Final Answer Thus, the values of \( a \) and \( b \) are: \[ \boxed{(1, 2)} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

If a and b are rational numbers and (sqrt(2)+2sqrt(3))/(2sqrt(2)+sqrt(3))=a+b sqrt(6)

If a and b are rational numbers and (sqrt(11)-sqrt(7))/(sqrt(11) +sqrt(7))=a - b sqrt(77) . find the value of a and b.

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

If (sqrt7-sqrt5)/(sqrt7+sqrt5)=a+bsqrt(35) , then the value of (a - b) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. Evaluate sqrt(20)+sqrt(12)+root(3)(729)-(4)/(sqrt(5)-sqrt(3))-sqrt(81)

    Text Solution

    |

  2. Let a=(1)/(2-sqrt(3))+(1)/(3-sqrt(8))+(1)/(4-sqrt(15)) Then we have .

    Text Solution

    |

  3. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  4. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  5. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  6. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  7. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  8. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  9. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  10. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  11. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  12. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  13. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  14. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  15. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  16. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  17. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  18. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  19. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |

  20. The value of (d^(s+t)-:d^(s))-:d^(t) would be

    Text Solution

    |