Home
Class 14
MATHS
The value of (sqrt(72)xxsqrt(363)xxsqrt(...

The value of `(sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsqrt(252))` is

A

A) `(55)/(42)`

B

B) `(45)/(56)`

C

C) `(45)/(28)`

D

D) `(55)/(28)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{72} \times \sqrt{363} \times \sqrt{175}) / (\sqrt{32} \times \sqrt{147} \times \sqrt{252})\), we can follow these steps: ### Step 1: Combine the square roots We can combine the square roots in the numerator and denominator: \[ \frac{\sqrt{72 \times 363 \times 175}}{\sqrt{32 \times 147 \times 252}} \] ### Step 2: Simplify the expression under the square roots Now we will calculate the products in the numerator and denominator: - Numerator: \(72 \times 363 \times 175\) - Denominator: \(32 \times 147 \times 252\) ### Step 3: Factor the numbers Let's factor each number into its prime factors: - \(72 = 2^3 \times 3^2\) - \(363 = 3 \times 11^2\) - \(175 = 5^2 \times 7\) - \(32 = 2^5\) - \(147 = 3 \times 7^2\) - \(252 = 2^2 \times 3^2 \times 7\) ### Step 4: Substitute the factors into the products Now substitute the factors back into the products: \[ 72 \times 363 \times 175 = (2^3 \times 3^2) \times (3 \times 11^2) \times (5^2 \times 7) \] \[ 32 \times 147 \times 252 = (2^5) \times (3 \times 7^2) \times (2^2 \times 3^2 \times 7) \] ### Step 5: Combine the factors Combine the factors: Numerator: \[ = 2^3 \times 3^3 \times 11^2 \times 5^2 \times 7 \] Denominator: \[ = 2^{5+2} \times 3^{1+2} \times 7^{1+2} = 2^7 \times 3^3 \times 7^3 \] ### Step 6: Simplify the fraction Now we can simplify the fraction: \[ \frac{2^3 \times 3^3 \times 11^2 \times 5^2 \times 7}{2^7 \times 3^3 \times 7^3} \] This simplifies to: \[ \frac{11^2 \times 5^2}{2^{7-3} \times 7^{3-1}} = \frac{11^2 \times 5^2}{2^4 \times 7^2} \] ### Step 7: Take the square root Now we take the square root of the simplified fraction: \[ \sqrt{\frac{11^2 \times 5^2}{2^4 \times 7^2}} = \frac{11 \times 5}{2^2 \times 7} = \frac{55}{4 \times 7} = \frac{55}{28} \] ### Final Answer Thus, the value of the expression is: \[ \frac{55}{28} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

sqrt(512)xxsqrt(1250)

sqrt(26)xxsqrt(6.24)xxsqrt(102)=?

root(3)(x)=sqrt(12)+sqrt(147)

Find the value of (sqrt(32)+sqrt(48))/(sqrt(8)+sqrt(12))

(sqrt(4356)xxsqrt(?))/(sqrt(6084))=11

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. If a,b are rationals and asqrt(2)+bsqrt(3) =sqrt(98)+sqrt(108)-sqrt(...

    Text Solution

    |

  2. If root(3)(a)=root(3)(26)+root(3)(7)+root(3)(63), then-

    Text Solution

    |

  3. The value of (sqrt(72)xxsqrt(363)xxsqrt(175))/(sqrt(32)xxsqrt(147)xxsq...

    Text Solution

    |

  4. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  5. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  6. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  7. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  8. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  9. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  10. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  11. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  12. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  13. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  14. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  15. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  16. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  17. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |

  18. The value of (d^(s+t)-:d^(s))-:d^(t) would be

    Text Solution

    |

  19. ((2.3)^(3)+0.027)/((2.3)^(2)-0.69+0.09) is equal to :

    Text Solution

    |

  20. (2^(51)+2^(52)+2^(53)+2^(54)+2^(55)) is divisible by

    Text Solution

    |