Home
Class 14
MATHS
If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqr...

If `(4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B)` then B-A is

A

`-13`

B

`2sqrt(13)`

C

`13`

D

`3sqrt(3)-sqrt(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{4 + 3\sqrt{3}}{\sqrt{7 + 4\sqrt{3}}} = A + \sqrt{B}\) and find \(B - A\), we can follow these steps: ### Step 1: Simplify the denominator We start with the denominator \(\sqrt{7 + 4\sqrt{3}}\). We can express \(7 + 4\sqrt{3}\) in a different form. Notice that: \[ 7 + 4\sqrt{3} = (2 + \sqrt{3})^2 \] This is because: \[ (2 + \sqrt{3})^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] Thus, we have: \[ \sqrt{7 + 4\sqrt{3}} = 2 + \sqrt{3} \] ### Step 2: Rewrite the expression Now we can rewrite the original expression: \[ \frac{4 + 3\sqrt{3}}{2 + \sqrt{3}} \] ### Step 3: Rationalize the denominator To eliminate the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \(2 - \sqrt{3}\): \[ \frac{(4 + 3\sqrt{3})(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} \] The denominator simplifies as follows: \[ (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] So, the denominator becomes 1. ### Step 4: Simplify the numerator Now we simplify the numerator: \[ (4 + 3\sqrt{3})(2 - \sqrt{3}) = 4 \cdot 2 - 4\sqrt{3} + 3\sqrt{3} \cdot 2 - 3\sqrt{3} \cdot \sqrt{3} \] Calculating this gives: \[ = 8 - 4\sqrt{3} + 6\sqrt{3} - 3 = 8 - 3 + (6\sqrt{3} - 4\sqrt{3}) = 5 + 2\sqrt{3} \] ### Step 5: Final expression Thus, we have: \[ \frac{4 + 3\sqrt{3}}{\sqrt{7 + 4\sqrt{3}}} = 5 + 2\sqrt{3} \] This means \(A = 5\) and \(B = 12\) (since \(2\sqrt{3} = \sqrt{12}\)). ### Step 6: Calculate \(B - A\) Now we calculate \(B - A\): \[ B - A = 12 - 5 = 7 \] ### Final Answer Thus, the value of \(B - A\) is \(7\). ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=a+sqrt(b), then (a,b) is

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(5+2sqrt(3))/(7+4sqrt(3))=a-b sqrt(3)

(3+sqrt(7))/(3-sqrt(7))=a+b sqrt(7)

If (4+3sqrt(5))/(sqrt(5))=a+b sqrt(5), bis

If (4+3sqrt(5))/(4-3sqrt(5))=a+b sqrt(5)

(3sqrt(2)-sqrt(3))(4sqrt(3)-sqrt(2))

4sqrt(3)-7sqrt(12)+2sqrt(75)=

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. Simplify : (5.32xx56+5.32xx44)/((7.66)^(2)-(2.34)^(2))

    Text Solution

    |

  2. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  3. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  4. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  5. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  6. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  7. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  8. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  9. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  10. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  11. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  12. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  13. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  14. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |

  15. The value of (d^(s+t)-:d^(s))-:d^(t) would be

    Text Solution

    |

  16. ((2.3)^(3)+0.027)/((2.3)^(2)-0.69+0.09) is equal to :

    Text Solution

    |

  17. (2^(51)+2^(52)+2^(53)+2^(54)+2^(55)) is divisible by

    Text Solution

    |

  18. What is the value of ((0.7)^(3) - (0.4)^(3))/((0.7)^(2) + 0.7 xx 0.4 +...

    Text Solution

    |

  19. If (sqrt(2+x)+sqrt(2-x))/(sqrt(2+x)-sqrt(2-x))=2 the value of x is

    Text Solution

    |

  20. 0.75xx7.5-2xx7.5xx0.25+0.25xx2.5 is equal to

    Text Solution

    |