Home
Class 14
MATHS
Find the simplest value of 2sqrt(50)+sqr...

Find the simplest value of `2sqrt(50)+sqrt(18)-sqrt(72)` (given `sqrt(2)=1.414` ) .

A

`4.242`

B

`9.898`

C

`10.312`

D

`8.484`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(2\sqrt{50} + \sqrt{18} - \sqrt{72}\), we can follow these steps: ### Step 1: Simplify each square root term 1. **Simplify \(\sqrt{50}\)**: \[ \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \] Therefore, \(2\sqrt{50} = 2 \times 5\sqrt{2} = 10\sqrt{2}\). 2. **Simplify \(\sqrt{18}\)**: \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \] 3. **Simplify \(\sqrt{72}\)**: \[ \sqrt{72} = \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} = 6\sqrt{2} \] ### Step 2: Substitute the simplified terms back into the expression Now substituting the simplified terms back into the original expression: \[ 2\sqrt{50} + \sqrt{18} - \sqrt{72} = 10\sqrt{2} + 3\sqrt{2} - 6\sqrt{2} \] ### Step 3: Combine like terms Combine the coefficients of \(\sqrt{2}\): \[ 10\sqrt{2} + 3\sqrt{2} - 6\sqrt{2} = (10 + 3 - 6)\sqrt{2} = 7\sqrt{2} \] ### Step 4: Substitute the value of \(\sqrt{2}\) Given that \(\sqrt{2} = 1.414\), we can now calculate: \[ 7\sqrt{2} = 7 \times 1.414 = 9.898 \] ### Final Answer Thus, the simplest value of \(2\sqrt{50} + \sqrt{18} - \sqrt{72}\) is approximately \(9.898\). ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt18 + sqrt50 - sqrt32 is

Find the value of sqrt(18)+sqrt(12) , if sqrt(12)=1.414 and sqrt(3)=1.732 . The following are the steps involved in solving the above problem. Arrange that in sequential order. (A) 4.242+3.464=7.706 (B) 3sqrt(2)+2sqrt(3) (C) sqrt(18)+sqrt(12)=sqrt(3^(2)xx2)+sqrt(2^(2)xx3) (D) 3(1.414)+2(1.732)

The value of sqrt( 6 - sqrt( 38-2sqrt(72))) is closest to :

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. 2+(6)/(sqrt(3))+(1)/(2+sqrt(3))+(1)/(sqrt(3)-2) equals to

    Text Solution

    |

  2. If (4+3sqrt(3))/(sqrt(7+4sqrt(3)))=A+sqrt(B) then B-A is

    Text Solution

    |

  3. Find the simplest value of 2sqrt(50)+sqrt(18)-sqrt(72) (given sqrt(2)=...

    Text Solution

    |

  4. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  5. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  6. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  7. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  8. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  9. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  10. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  11. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  12. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  13. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |

  14. The value of (d^(s+t)-:d^(s))-:d^(t) would be

    Text Solution

    |

  15. ((2.3)^(3)+0.027)/((2.3)^(2)-0.69+0.09) is equal to :

    Text Solution

    |

  16. (2^(51)+2^(52)+2^(53)+2^(54)+2^(55)) is divisible by

    Text Solution

    |

  17. What is the value of ((0.7)^(3) - (0.4)^(3))/((0.7)^(2) + 0.7 xx 0.4 +...

    Text Solution

    |

  18. If (sqrt(2+x)+sqrt(2-x))/(sqrt(2+x)-sqrt(2-x))=2 the value of x is

    Text Solution

    |

  19. 0.75xx7.5-2xx7.5xx0.25+0.25xx2.5 is equal to

    Text Solution

    |

  20. ((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16)) is equal to

    Text Solution

    |