Home
Class 14
MATHS
Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3...

Simplify : `((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)+(4.7)^(2)+(3.8)^(2)-1.5xx4.7-4.7xx3.8-3.8xx1.5)`

A

`0`

B

`1`

C

`10`

D

`30`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{(1.5)^3 + (4.7)^3 + (3.8)^3 - 3 \cdot 1.5 \cdot 4.7 \cdot 3.8}{(1.5)^2 + (4.7)^2 + (3.8)^2 - 1.5 \cdot 4.7 - 4.7 \cdot 3.8 - 3.8 \cdot 1.5} \] we can use the identities related to the sum of cubes and the sum of squares. ### Step 1: Identify Variables Let: - \( A = 1.5 \) - \( B = 4.7 \) - \( C = 3.8 \) ### Step 2: Apply the Sum of Cubes Formula The numerator can be expressed using the identity for the sum of cubes: \[ A^3 + B^3 + C^3 - 3ABC = (A + B + C)(A^2 + B^2 + C^2 - AB - BC - CA) \] So, we rewrite the numerator as: \[ (A + B + C)(A^2 + B^2 + C^2 - AB - BC - CA) \] ### Step 3: Calculate \( A + B + C \) Now, calculate \( A + B + C \): \[ A + B + C = 1.5 + 4.7 + 3.8 = 10 \] ### Step 4: Calculate \( A^2 + B^2 + C^2 \) Next, we calculate \( A^2 + B^2 + C^2 \): \[ A^2 = (1.5)^2 = 2.25 \] \[ B^2 = (4.7)^2 = 22.09 \] \[ C^2 = (3.8)^2 = 14.44 \] Thus, \[ A^2 + B^2 + C^2 = 2.25 + 22.09 + 14.44 = 38.78 \] ### Step 5: Calculate \( AB + BC + CA \) Now, calculate \( AB + BC + CA \): \[ AB = 1.5 \cdot 4.7 = 7.05 \] \[ BC = 4.7 \cdot 3.8 = 17.86 \] \[ CA = 3.8 \cdot 1.5 = 5.7 \] Thus, \[ AB + BC + CA = 7.05 + 17.86 + 5.7 = 30.61 \] ### Step 6: Calculate \( A^2 + B^2 + C^2 - AB - BC - CA \) Now substitute into the expression: \[ A^2 + B^2 + C^2 - AB - BC - CA = 38.78 - 30.61 = 8.17 \] ### Step 7: Substitute Back into the Expression Now, substitute back into the numerator: \[ \text{Numerator} = (A + B + C)(A^2 + B^2 + C^2 - AB - BC - CA) = 10 \cdot 8.17 = 81.7 \] ### Step 8: Calculate the Denominator Now, we calculate the denominator: \[ A^2 + B^2 + C^2 - AB - BC - CA = 38.78 - 30.61 = 8.17 \] ### Step 9: Final Simplification Now we can simplify the entire expression: \[ \frac{81.7}{8.17} = 10 \] Thus, the simplified value of the expression is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Simplify : ((1.5)^3 + (4.7)^3+(3.8)^3 -3xx 1.5 xx 4.7 xx 3.8)/((1.5)^2 +(4.7)^2+(3.8)^2-1.5 xx 4.7 -4.7 xx 3.8 -3.8 xx 1.5)

The value of ((1.5)^3 + (4.7)^3 + (3.8)^3 - 3 xx 1.5 xx 4.7 xx 3.8)/((1.5)^2 + (4.7)^2 + (3.8)^2 - (1.5 xx 4.7) - (4.7xx 3.8) - (1.5 xx 3.8)) is :

Solve ((5.9)^(3)+(1.8)^(3)+(4.8)^(3)-3xx5.9xx1.8xx4.8)/((5.9)^(2)+(1.8)^(2)+(4.8)^(2)-5.9xx1.8-1.8xx4.8-4.8xx5.9)

Simplify: (i) ((2^(5))2xx7^(3))/(8^(3)xx7) (ii) (25xx5^(2)xx t^(8))/(10^(3)xx t^(4))

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify: ((5^(-3)xx7^(4))/(7^(-2)xx5^(-6)))^((5)/(2))xx((5^(-3)xx7^(-3))/(7^(5)xx5^(2)))^((3)/(2))

Simplify ( i ) (((1)/(3))^(-2)-((1)/(2))^(-3)}-:((1)/(4))^(-2)*( ii) ((5)/(8))^(-7)xx((8)/(5))^(-5)

(4.5xx3.7+4.5xx6.3)/(1.5xx8.4-1.5xx7.4)=?

((2^8)^2xx5^3)/(7^3xx4)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. (6.5xx6.5-45.5+3.5xx3.5) is equal to

    Text Solution

    |

  2. (7.5xx7.5+37.5+2.5xx2.5) is equal to :

    Text Solution

    |

  3. Simplify : ((1.5)^(3)+(4.7)^(3)+(3.8)^(3)-3xx1.5xx4.7xx3.8)/((1.5)^(2)...

    Text Solution

    |

  4. Simplify : ((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))...

    Text Solution

    |

  5. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  6. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  7. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  8. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  9. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  10. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |

  11. The value of (d^(s+t)-:d^(s))-:d^(t) would be

    Text Solution

    |

  12. ((2.3)^(3)+0.027)/((2.3)^(2)-0.69+0.09) is equal to :

    Text Solution

    |

  13. (2^(51)+2^(52)+2^(53)+2^(54)+2^(55)) is divisible by

    Text Solution

    |

  14. What is the value of ((0.7)^(3) - (0.4)^(3))/((0.7)^(2) + 0.7 xx 0.4 +...

    Text Solution

    |

  15. If (sqrt(2+x)+sqrt(2-x))/(sqrt(2+x)-sqrt(2-x))=2 the value of x is

    Text Solution

    |

  16. 0.75xx7.5-2xx7.5xx0.25+0.25xx2.5 is equal to

    Text Solution

    |

  17. ((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16)) is equal to

    Text Solution

    |

  18. (137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133) is equal to

    Text Solution

    |

  19. The value of (3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1)) is equal ...

    Text Solution

    |

  20. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |