Home
Class 14
MATHS
Simplify : ((6.25)^((1)/(2))xx(0.0144)^(...

Simplify : `((6.25)^((1)/(2))xx(0.0144)^((1)/(2))+1)/((0.027)^((1)/(3))xx(81)^((1)/(4)))`

A

`0.14`

B

`1.4`

C

`1`

D

`1.bar(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{(6.25)^{\frac{1}{2}} \times (0.0144)^{\frac{1}{2}} + 1}{(0.027)^{\frac{1}{3}} \times (81)^{\frac{1}{4}}}\), we will follow these steps: ### Step 1: Simplify the numerator First, we simplify the terms in the numerator: 1. Calculate \((6.25)^{\frac{1}{2}}\): \[ (6.25)^{\frac{1}{2}} = \sqrt{6.25} = 2.5 \] 2. Calculate \((0.0144)^{\frac{1}{2}}\): \[ (0.0144)^{\frac{1}{2}} = \sqrt{0.0144} = 0.12 \] 3. Multiply these results: \[ 2.5 \times 0.12 = 0.3 \] 4. Add 1 to this result: \[ 0.3 + 1 = 1.3 \] ### Step 2: Simplify the denominator Now, we simplify the terms in the denominator: 1. Calculate \((0.027)^{\frac{1}{3}}\): \[ (0.027)^{\frac{1}{3}} = \sqrt[3]{0.027} = 0.3 \] 2. Calculate \((81)^{\frac{1}{4}}\): \[ (81)^{\frac{1}{4}} = \sqrt[4]{81} = 3 \] 3. Multiply these results: \[ 0.3 \times 3 = 0.9 \] ### Step 3: Combine the results Now we can combine the results from the numerator and the denominator: \[ \frac{1.3}{0.9} \] ### Step 4: Simplify the fraction To simplify \(\frac{1.3}{0.9}\): 1. Multiply both the numerator and the denominator by 10 to eliminate the decimal: \[ \frac{1.3 \times 10}{0.9 \times 10} = \frac{13}{9} \] ### Final Result Thus, the simplified expression is: \[ \frac{13}{9} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

When simplified,the expression (100)^((1)/(2))xx(0.001)^((1)/(3))-(0.0016)^((1)/(4))xx3^(0)+((5)/(4))^(-1)

Simplify : (3^(-3)xx6^(2)xx sqrt(98))/(5^(2)xx((1)/(25))^((1)/(3))xx(15)^(-(4)/(3))xx3^((1)/(3)))

Knowledge Check

  • Simplify ((6.25)^(1/2)xx(0.0144)^(1/2)+1)/((0.027)^(1/3) xx (81)^(1/3)) = ?

    A
    `5/7`
    B
    `9/11`
    C
    `13/9`
    D
    1
  • When simplified, the expression (100)^((1)/(2)) xx (0.001)^((1)/(3))-(0.0016)^((1)/(4) xx 3^(0)) + ((5)/(4))^(-1) is equal to :

    A
    1.6
    B
    0.8
    C
    `1.0`
    D
    0
  • Simplify : ((0.73)^(2)+(0.27)^(3))/((0.73)^(2)+(0.27)^(2)-(0.73)xx(0.27))

    A
    `1`
    B
    `0.4087`
    C
    `0.73`
    D
    `0.27`
  • Similar Questions

    Explore conceptually related problems

    Simplify (i) 3^((1)/(4)) xx 5^((1)/(4)) (ii) 2^((5)/(8)) xx 3^((5)/(8)) (iii) 6^((1)/(2)) xx 7^((1)/(2))

    Simplify : (3^2)/(2^2)+(((1)/(16)xx (1)/(8))^2)/((1/4)^(3)div (1/2)^(3))

    Simplify: ((-7)/(18) xx (15)/(-7)) -(1xx(1)/(4))+((1)/(2) xx (1)/(4))

    Simplify: (100)^(1/2) xx (0.001)^(1/3) -(0.0016)^(1/4) xx3^(0) + 5/4^(-1)

    (0.0144)^(1//2)+(2.5)^(2)=?