Home
Class 14
MATHS
Find the value of ((243)^((n)/(5))xx3^(2...

Find the value of `((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))`

A

`3`

B

`9`

C

`27`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(243)^{\frac{n}{5}} \times 3^{2n+1}}{9^{n} \times 3^{n-1}}\), we will simplify it step by step. ### Step 1: Rewrite the bases First, we can express all numbers in terms of base \(3\): - \(243 = 3^5\) - \(9 = 3^2\) So we can rewrite the expression as: \[ \frac{(3^5)^{\frac{n}{5}} \times 3^{2n+1}}{(3^2)^{n} \times 3^{n-1}} \] ### Step 2: Simplify the powers Now, apply the power of a power rule \((a^m)^n = a^{m \cdot n}\): \[ (3^5)^{\frac{n}{5}} = 3^{5 \cdot \frac{n}{5}} = 3^n \] \[ (3^2)^{n} = 3^{2n} \] Substituting these back into the expression gives: \[ \frac{3^n \times 3^{2n+1}}{3^{2n} \times 3^{n-1}} \] ### Step 3: Combine the powers in the numerator Using the property \(a^m \times a^n = a^{m+n}\): \[ 3^n \times 3^{2n+1} = 3^{n + (2n + 1)} = 3^{3n + 1} \] ### Step 4: Combine the powers in the denominator Similarly, for the denominator: \[ 3^{2n} \times 3^{n-1} = 3^{(2n + (n - 1))} = 3^{3n - 1} \] ### Step 5: Simplify the entire expression Now, we can simplify the fraction: \[ \frac{3^{3n + 1}}{3^{3n - 1}} = 3^{(3n + 1) - (3n - 1)} = 3^{3n + 1 - 3n + 1} = 3^{2} \] ### Step 6: Final answer Thus, the value of the expression is: \[ 3^2 = 9 \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Fnd the value: ((243)^((n)/(5))3^(2n+1))/(9^(n)*3^(n-1))

The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))

Find the value of (3^(12+n)xx9^(2n-7))/(3^(5n))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. Simplify : (0.41xx0.41xx0.41+0.69xx0.69xx0.69)/(0.41xx0.41-0.41xx0.69+...

    Text Solution

    |

  2. (10.3xx10.3xx10.3+1)/(10.3xx10.3-10.3+1) is equal to :

    Text Solution

    |

  3. Find the value of ((243)^((n)/(5))xx3^(2n+1))/(9^(n)xx3^(n-1))

    Text Solution

    |

  4. (0.04)^(-1.5) on simplification gives :

    Text Solution

    |

  5. ((0.96)^(3)-(0.1)^(3))/((0.96)^(2)+0.096+(0.1)^(2)) is simplified to :

    Text Solution

    |

  6. The value of (64-0.008)/(16+0.8+0.04) is :

    Text Solution

    |

  7. The value of (d^(s+t)-:d^(s))-:d^(t) would be

    Text Solution

    |

  8. ((2.3)^(3)+0.027)/((2.3)^(2)-0.69+0.09) is equal to :

    Text Solution

    |

  9. (2^(51)+2^(52)+2^(53)+2^(54)+2^(55)) is divisible by

    Text Solution

    |

  10. What is the value of ((0.7)^(3) - (0.4)^(3))/((0.7)^(2) + 0.7 xx 0.4 +...

    Text Solution

    |

  11. If (sqrt(2+x)+sqrt(2-x))/(sqrt(2+x)-sqrt(2-x))=2 the value of x is

    Text Solution

    |

  12. 0.75xx7.5-2xx7.5xx0.25+0.25xx2.5 is equal to

    Text Solution

    |

  13. ((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16)) is equal to

    Text Solution

    |

  14. (137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133) is equal to

    Text Solution

    |

  15. The value of (3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1)) is equal ...

    Text Solution

    |

  16. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |

  17. The value of [((0.337+0.126)^(2)-(0.337-0.126)^(2))/(0.337xx0.126)] is

    Text Solution

    |

  18. (256xx256-144xx144)/(112) is equal to

    Text Solution

    |

  19. [8.7xx8.7+2xx8.7xx1.3+1.3xx1.3] is equal to

    Text Solution

    |

  20. The value of ((2+sqrt(3))/(2-sqrt(3))-4sqrt(3))^(2) is

    Text Solution

    |