Home
Class 14
MATHS
((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10....

`((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16))` is equal to

A

A) `(1)/(3)`

B

B) `(5)/(16)`

C

C) `(3)/(8)`

D

D) `(41)/(7280)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \frac{1}{10 \cdot 13} + \frac{1}{13 \cdot 16}\), we can simplify each term and look for a pattern. ### Step 1: Rewrite each term We can rewrite each term in the expression: \[ \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \frac{1}{10 \cdot 13} + \frac{1}{13 \cdot 16} \] ### Step 2: Use the formula for partial fractions Each term can be expressed using partial fractions: \[ \frac{1}{a(a+b)} = \frac{1}{b} \left( \frac{1}{a} - \frac{1}{a+b} \right) \] Applying this to each term: - For \(\frac{1}{1 \cdot 4}\): \[ \frac{1}{1 \cdot 4} = \frac{1}{3} \left( \frac{1}{1} - \frac{1}{4} \right) \] - For \(\frac{1}{4 \cdot 7}\): \[ \frac{1}{4 \cdot 7} = \frac{1}{3} \left( \frac{1}{4} - \frac{1}{7} \right) \] - For \(\frac{1}{7 \cdot 10}\): \[ \frac{1}{7 \cdot 10} = \frac{1}{3} \left( \frac{1}{7} - \frac{1}{10} \right) \] - For \(\frac{1}{10 \cdot 13}\): \[ \frac{1}{10 \cdot 13} = \frac{1}{3} \left( \frac{1}{10} - \frac{1}{13} \right) \] - For \(\frac{1}{13 \cdot 16}\): \[ \frac{1}{13 \cdot 16} = \frac{1}{3} \left( \frac{1}{13} - \frac{1}{16} \right) \] ### Step 3: Combine the terms Now we can combine all these terms: \[ \frac{1}{3} \left( \left( \frac{1}{1} - \frac{1}{4} \right) + \left( \frac{1}{4} - \frac{1}{7} \right) + \left( \frac{1}{7} - \frac{1}{10} \right) + \left( \frac{1}{10} - \frac{1}{13} \right) + \left( \frac{1}{13} - \frac{1}{16} \right) \right) \] ### Step 4: Simplify the expression Notice that the intermediate terms cancel out: \[ \frac{1}{3} \left( 1 - \frac{1}{16} \right) = \frac{1}{3} \left( \frac{16 - 1}{16} \right) = \frac{1}{3} \cdot \frac{15}{16} = \frac{15}{48} \] ### Step 5: Final simplification Now we can simplify \(\frac{15}{48}\): \[ \frac{15}{48} = \frac{5}{16} \] Thus, the final answer is: \[ \frac{5}{16} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

((1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+(1)/(10xx13)+(1)/(13xx16))=?

(1)/(1*4*7)+(1)/(4*7*10)+(1)/(7*10*13)+

Prove the following by the principle of mathematical induction: (1)/(1.4)+(1)/(4.7)+(1)/(7.10)++(1)/((3n-1)(3n+2))=(n)/(3n+1)

12(1)/(3)+10(5)/(6)-7(2)/(3)-1(4)/(7)=?( a) 11(13)/(14) (b) 13(11)/(14)(c)13(13)/(14) (d) 14(11)/(13) (e) None of these

The value of (1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+…(1)/(16xx19) is

(1)/(5)times(11)/(13)+7(4)/(5)times(1)/(13)=

(1)/(2.4)+(1.3)/(2.4.6)+(1.3.5.7)/(2.4.6.8*10)+.........oo is equal to

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. If (sqrt(2+x)+sqrt(2-x))/(sqrt(2+x)-sqrt(2-x))=2 the value of x is

    Text Solution

    |

  2. 0.75xx7.5-2xx7.5xx0.25+0.25xx2.5 is equal to

    Text Solution

    |

  3. ((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16)) is equal to

    Text Solution

    |

  4. (137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133) is equal to

    Text Solution

    |

  5. The value of (3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1)) is equal ...

    Text Solution

    |

  6. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |

  7. The value of [((0.337+0.126)^(2)-(0.337-0.126)^(2))/(0.337xx0.126)] is

    Text Solution

    |

  8. (256xx256-144xx144)/(112) is equal to

    Text Solution

    |

  9. [8.7xx8.7+2xx8.7xx1.3+1.3xx1.3] is equal to

    Text Solution

    |

  10. The value of ((2+sqrt(3))/(2-sqrt(3))-4sqrt(3))^(2) is

    Text Solution

    |

  11. (3.25xx3.25+1.75xx1.75-2xx3.25xx1.75)/(3.25xx3.25-1.75xx1.75) is

    Text Solution

    |

  12. ((0.05)^(2)+(0.41)^(2)+(0.073)^(2))/((0.005)^(2)+(0.041)^(2)+(0.0073)^...

    Text Solution

    |

  13. (2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1) is equal to

    Text Solution

    |

  14. The value of (0.98)^(3) + (0.02)^(3) + 3 xx 0.98 xx 0.02 - 1 is :

    Text Solution

    |

  15. Simplify : root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))

    Text Solution

    |

  16. On simplification the value of 1-(1)/(1+sqrt(2))+(1)/(1-sqrt(2)) is

    Text Solution

    |

  17. (2.4xx10^(3))-:(8xx10^(-2)) equals

    Text Solution

    |

  18. [3-4(3-4)^(-1)]^(-1) is equal to :

    Text Solution

    |

  19. ((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2)) equals

    Text Solution

    |

  20. Evaluate : (sqrt(24)+sqrt(6))/(sqrt(24)-sqrt(6))

    Text Solution

    |