Home
Class 14
MATHS
(137xx137+133xx133+18221)/(137xx137xx137...

`(137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133)` is equal to

A

`4`

B

`270`

C

`(1)/(4)`

D

`(1)/(270)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((137 \times 137 + 133 \times 133 + 18221) / (137 \times 137 \times 137 - 133 \times 133 \times 133)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{137 \times 137 + 133 \times 133 + 18221}{137 \times 137 \times 137 - 133 \times 133 \times 133} \] ### Step 2: Recognize the components Notice that \(137 \times 137\) is \(137^2\) and \(133 \times 133\) is \(133^2\). So we can rewrite the numerator: \[ 137^2 + 133^2 + 18221 \] ### Step 3: Simplify the numerator Next, we can calculate \(137^2\) and \(133^2\): \[ 137^2 = 18769, \quad 133^2 = 17689 \] Now substituting these values into the numerator: \[ 18769 + 17689 + 18221 \] Calculating this gives: \[ 18769 + 17689 = 36458 \] \[ 36458 + 18221 = 54679 \] So, the numerator simplifies to \(54679\). ### Step 4: Simplify the denominator Now, we simplify the denominator: \[ 137^3 - 133^3 \] Using the identity \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\), where \(a = 137\) and \(b = 133\): \[ 137^3 - 133^3 = (137 - 133)(137^2 + 137 \times 133 + 133^2) \] Calculating \(137 - 133\): \[ 137 - 133 = 4 \] Now we need to calculate \(137^2 + 137 \times 133 + 133^2\): We already have \(137^2 = 18769\) and \(133^2 = 17689\). Now we calculate \(137 \times 133\): \[ 137 \times 133 = 18221 \] So: \[ 137^2 + 137 \times 133 + 133^2 = 18769 + 18221 + 17689 \] Calculating this gives: \[ 18769 + 18221 = 36990 \] \[ 36990 + 17689 = 54679 \] Thus, the denominator simplifies to: \[ 4 \times 54679 \] ### Step 5: Final expression Now we can write the entire expression: \[ \frac{54679}{4 \times 54679} \] This simplifies to: \[ \frac{1}{4} \] ### Conclusion Thus, the value of the expression is: \[ \frac{1}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(137 xx 137 + 137 xx 133 + 133 xx 133)/(137 xx 137 xx 137 - 133 xx 133 xx 133) is equal to

Simplify:- '(137*137 + 137*133 + 133*133) / (137*137*137 - 133*133*133)'

(963xx963xx963+137xx137xx137)/(963xx963-963xx137+137xx137)=?

17, 21, 37, 73, 137, 237, ….

133+28-:7-8xx2= ?

For for A=133^(@),2cos""A/2 is equal to

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. 0.75xx7.5-2xx7.5xx0.25+0.25xx2.5 is equal to

    Text Solution

    |

  2. ((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16)) is equal to

    Text Solution

    |

  3. (137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133) is equal to

    Text Solution

    |

  4. The value of (3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1)) is equal ...

    Text Solution

    |

  5. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |

  6. The value of [((0.337+0.126)^(2)-(0.337-0.126)^(2))/(0.337xx0.126)] is

    Text Solution

    |

  7. (256xx256-144xx144)/(112) is equal to

    Text Solution

    |

  8. [8.7xx8.7+2xx8.7xx1.3+1.3xx1.3] is equal to

    Text Solution

    |

  9. The value of ((2+sqrt(3))/(2-sqrt(3))-4sqrt(3))^(2) is

    Text Solution

    |

  10. (3.25xx3.25+1.75xx1.75-2xx3.25xx1.75)/(3.25xx3.25-1.75xx1.75) is

    Text Solution

    |

  11. ((0.05)^(2)+(0.41)^(2)+(0.073)^(2))/((0.005)^(2)+(0.041)^(2)+(0.0073)^...

    Text Solution

    |

  12. (2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1) is equal to

    Text Solution

    |

  13. The value of (0.98)^(3) + (0.02)^(3) + 3 xx 0.98 xx 0.02 - 1 is :

    Text Solution

    |

  14. Simplify : root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))

    Text Solution

    |

  15. On simplification the value of 1-(1)/(1+sqrt(2))+(1)/(1-sqrt(2)) is

    Text Solution

    |

  16. (2.4xx10^(3))-:(8xx10^(-2)) equals

    Text Solution

    |

  17. [3-4(3-4)^(-1)]^(-1) is equal to :

    Text Solution

    |

  18. ((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2)) equals

    Text Solution

    |

  19. Evaluate : (sqrt(24)+sqrt(6))/(sqrt(24)-sqrt(6))

    Text Solution

    |

  20. 55^(3)+17^(3)-72^(3)+201960 is equal to

    Text Solution

    |