Home
Class 14
MATHS
The value of (3xx9^(n+1)+9xx3^(2n-1))/(9...

The value of `(3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1))` is equal to

A

`3(3)/(5)`

B

`3(2)/(5)`

C

`3(1)/(5)`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3 \cdot 9^{n+1} + 9 \cdot 3^{2n-1}) / (9 \cdot 3^{2n} - 6 \cdot 9^{n-1})\), we will first rewrite all terms in terms of base 3. ### Step 1: Rewrite the expression using base 3 We know that \(9 = 3^2\). Therefore, we can rewrite the expression as follows: \[ 3 \cdot (3^2)^{n+1} + (3^2) \cdot 3^{2n-1} \] This simplifies to: \[ 3 \cdot 3^{2(n+1)} + 3^2 \cdot 3^{2n-1} \] ### Step 2: Simplify the numerator Now we can simplify each term in the numerator: 1. The first term: \[ 3 \cdot 3^{2(n+1)} = 3^{1 + 2(n+1)} = 3^{2n + 3} \] 2. The second term: \[ 3^2 \cdot 3^{2n-1} = 3^{2 + (2n - 1)} = 3^{2n + 1} \] Thus, the numerator becomes: \[ 3^{2n + 3} + 3^{2n + 1} \] ### Step 3: Factor the numerator We can factor out the common term \(3^{2n + 1}\): \[ 3^{2n + 1}(3^2 + 1) = 3^{2n + 1}(9 + 1) = 3^{2n + 1} \cdot 10 \] ### Step 4: Simplify the denominator Now, let's simplify the denominator: \[ 9 \cdot 3^{2n} - 6 \cdot 9^{n-1} = 9 \cdot 3^{2n} - 6 \cdot (3^2)^{n-1} \] This simplifies to: \[ 9 \cdot 3^{2n} - 6 \cdot 3^{2(n-1)} = 9 \cdot 3^{2n} - 6 \cdot 3^{2n - 2} \] ### Step 5: Factor the denominator We can factor out \(3^{2n - 2}\): \[ 3^{2n - 2}(9 \cdot 3^2 - 6) = 3^{2n - 2}(9 \cdot 9 - 6) = 3^{2n - 2}(81 - 6) = 3^{2n - 2} \cdot 75 \] ### Step 6: Combine the results Now we can substitute the simplified numerator and denominator back into the expression: \[ \frac{3^{2n + 1} \cdot 10}{3^{2n - 2} \cdot 75} \] ### Step 7: Simplify the fraction We can simplify this fraction by canceling out the powers of 3: \[ \frac{10}{75} \cdot 3^{(2n + 1) - (2n - 2)} = \frac{10}{75} \cdot 3^{3} = \frac{10}{75} \cdot 27 \] ### Step 8: Final simplification Now, simplify \(\frac{10}{75}\): \[ \frac{10}{75} = \frac{2}{15} \] Thus, the final expression becomes: \[ \frac{2}{15} \cdot 27 = \frac{54}{15} = \frac{18}{5} \] ### Final Answer The value of the expression is \(\frac{18}{5}\). ---
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -V|53 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -III|52 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

(3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))

The value of (3^((12+n))xx9^((2n-7)))/(3^(5n)) is

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

Simplify :(3xx27^(n+1)+9xx3^(3n-1))/(8xx3^(3n)-5xx27^(n))

The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) is equal to

Find the value of (3^(12+n)xx9^(2n-7))/(3^(5n))

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -IV
  1. ((1)/(1.4)+(1)/(4.7)+(1)/(7.10)+(1)/(10.13)+(1)/(13.16)) is equal to

    Text Solution

    |

  2. (137xx137+133xx133+18221)/(137xx137xx137-133xx133xx133) is equal to

    Text Solution

    |

  3. The value of (3xx9^(n+1)+9xx3^(2n-1))/(9xx3^(2n)-6xx9^(n-1)) is equal ...

    Text Solution

    |

  4. ((5.624)^(3)+(4.376)^(3))/(5.624xx5.624-(5.624xx4.376)+4.376xx4.376) i...

    Text Solution

    |

  5. The value of [((0.337+0.126)^(2)-(0.337-0.126)^(2))/(0.337xx0.126)] is

    Text Solution

    |

  6. (256xx256-144xx144)/(112) is equal to

    Text Solution

    |

  7. [8.7xx8.7+2xx8.7xx1.3+1.3xx1.3] is equal to

    Text Solution

    |

  8. The value of ((2+sqrt(3))/(2-sqrt(3))-4sqrt(3))^(2) is

    Text Solution

    |

  9. (3.25xx3.25+1.75xx1.75-2xx3.25xx1.75)/(3.25xx3.25-1.75xx1.75) is

    Text Solution

    |

  10. ((0.05)^(2)+(0.41)^(2)+(0.073)^(2))/((0.005)^(2)+(0.041)^(2)+(0.0073)^...

    Text Solution

    |

  11. (2.3xx2.3xx2.3-1)/(2.3xx2.3+2.3+1) is equal to

    Text Solution

    |

  12. The value of (0.98)^(3) + (0.02)^(3) + 3 xx 0.98 xx 0.02 - 1 is :

    Text Solution

    |

  13. Simplify : root(3)(-2197)xxroot(3)(-125)+root(3)((27)/(512))

    Text Solution

    |

  14. On simplification the value of 1-(1)/(1+sqrt(2))+(1)/(1-sqrt(2)) is

    Text Solution

    |

  15. (2.4xx10^(3))-:(8xx10^(-2)) equals

    Text Solution

    |

  16. [3-4(3-4)^(-1)]^(-1) is equal to :

    Text Solution

    |

  17. ((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2)) equals

    Text Solution

    |

  18. Evaluate : (sqrt(24)+sqrt(6))/(sqrt(24)-sqrt(6))

    Text Solution

    |

  19. 55^(3)+17^(3)-72^(3)+201960 is equal to

    Text Solution

    |

  20. The simplest value of (3sqrt(8)-2sqrt(12)+sqrt(20))/(3sqrt(18)-2sqrt(2...

    Text Solution

    |